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Introduction

Accurate and timely estimation of in-season crop acreage is critical for agricultural monitoring, food security planning, 
and evidence-based policymaking, particularly in large, diverse agrarian economies such as India [1,2]. Traditionally, these 
estimates have relied on � eld surveys and manual interpretation of satellite imagery, methods that are not only labour-
intensive and time-consuming but also unfeasible for large-scale operational implementation. � e emergence of Earth 
Observation (EO) technologies - especially Synthetic Aperture Radar (SAR) - has transformed the landscape of crop 
monitoring, o� ering high-resolution, weather-independent data acquisition capabilities [3,4].

SAR sensors, including Sentinel-1A and EOS-4, provide valuable temporal information on crop phenology and 
structural changes, even under persistent cloud cover conditions, making them particularly useful during monsoon 
seasons [5,6]. However, the practical utility of SAR data remains constrained by its complex preprocessing requirements 
- radiometric calibration, speckle � ltering, geometric/terrain correction, mosaicking, and temporal stacking - all of which 
require substantial domain expertise and computational e� ort [7].

In recent years, machine learning (ML) techniques have shown considerable promise in automating and enhancing 
SAR-based crop classi� cation work� ows [8,9]. Nonetheless, many existing approaches su� er from several operational 
shortcomings, including fragmented toolchains, non-intuitive interfaces, and inadequate optimization of ML models. Such 
limitations restrict the accessibility and scalability of these tools, particularly for end-users in government departments, 
agribusinesses, or rural advisory services who may lack deep technical expertise.

Moreover, prior systems frequently exhibit poor memory management, ine�  cient processing routines, and inadequate 
error handling, especially in terrain correction using DEM data such as SRTM 1 Sec HGT. Challenges related to GUI 
usability, excessive dependency on external libraries, and limited support for hyperparameter tuning further compromise 
their e� ectiveness. In some cases, inaccurate area estimation and non-scalable architectures have diminished the credibility 
and reliability of SAR-based monitoring tools in real-world applications.

To address these limitations, this study proposes a fully automated, GUI-based system for in-season crop classi� cation 
and acreage estimation, utilizing multi-temporal SAR datasets from Sentinel-1A (VV & VH) and EOS-4 (HH & HV). 
� e system incorporates a seamless data acquisition module (via ASF API or local input), a robust geoprocessing pipeline 
implemented through the SNAP Python interface, and ML-driven classi� cation with integrated hyperparameter tuning 
using the Scikit-learn framework. Importantly, a built-in module automates the download and integration of SRTM elevation 
data to facilitate accurate terrain correction.

� e system is designed to be memory-e�  cient and operationally robust, featuring a redesigned, intuitive front-end 
built using PyQt5 that simpli� es user interactions and enhances interpretability. Outputs include classi� ed maps, variable 
importance plots, backscatter temporal curves, and a statistical summary report. With demonstrated classi� cation accuracy 
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Abstract

Accurate in-season crop acreage statistics are crucial for agricultural policymakers, stakeholders, and the food security 
community. However, manual work� ows for downloading, preprocessing, and classifying Synthetic Aperture Radar (SAR) 
data - especially over large areas such as states or country - are time-consuming and prone to ine�  ciencies. � is study 
presents a Graphical User Interface (GUI)-based automated system designed for multi-class crop classi� cation and acreage 
estimation using multi-temporal SAR data and machine learning techniques. � e system supports data acquisition from 
two SAR platforms: Sentinel-1A (VV & VH) and EOS-4 (HH & HV), based on user-de� ned areas of interest (district or 
state level). � e automation pipeline includes comprehensive preprocessing steps such as radiometric calibration, speckle 
� ltering, geometric/terrain correction, mosaicing, crop land masking, and layer stacking. Classi� cation is performed using 
six di� erent machine learning algorithms, with integrated hyperparameter tuning to enhance model performance. � e 
system outputs class-wise crop area statistics and validates class separability using backscatter temporal pro� les. To evaluate 
its e� ectiveness, the system was applied to selected districts and achieved an overall classi� cation accuracy of approximately 
90% for major crops including paddy, arhar, cotton, and maize. A four-page auto-generated report summarizes the outputs, 
featuring the classi� cation report, confusion matrix, backscatter curves, variable importance plots, and classi� ed imagery. 
� e system is scalable, e�  cient, and user-friendly - requiring minimal technical expertise - making it a valuable tool for 
stakeholders in the agricultural domain. Its methodology can be readily adapted to other datasets and geographic regions, 
supporting broader applications in operational crop monitoring and decision-making.



Page 2/7

Copyright  : Goyal A

Citation: Goyal A, Aggarwal R, Mahajan S, Saran S (2025) Automated GUI-Based System for In-Season Crop Classifi cation and Acreage Estimation using 
Multi-Temporal SAR Data and Machine Learning. Arch Agri Res Technol 6: 1082

approaching 90% for key crops like paddy, arhar, cotton, and maize in selected Indian 
districts, the proposed system o� ers a scalable and user-friendly solution for SAR-
based crop monitoring.

By integrating recent advances in ML and geospatial automation, this research 
contributes to the growing � eld of digital agriculture and addresses the longstanding 
need for accessible, e�  cient, and accurate tools for operational crop monitoring and 
acreage forecasting.

Description of Data 

Satellite Data
In the proposed automation tool, SAR data has been utilized to bring about information 
over crop area for an ROI. Table 1 depicts the speci� cations of the respective satellites 
and the data used.

Table 1: Tabular description of types of data used: Sentinel-1A, and EOS-4.

S. No. Satellite Year Launched Sensor Organization Spatial Resolution Temporal 
Resolution Polarization

1 Sentinel-1A 2014 SAR-C ESA 10m 12 days VV, VH

2 EOS-4 2022 SAR-C ISRO 33 m (MRS) 17 days HH, HV

Sentinel-1A
Sentinel-1A is a Synthetic Aperture Radar (SAR) satellite mission operated by 

the European Space Agency (ESA) as a part of the Copernicus program. It provides 
high-resolution SAR data over a wide range of applications including land, ocean, 
and cryosphere monitoring. � e Sentinel-1A mission carries a C-band SAR sensor, 
which operates in two polarizations: Vertical-Vertical (VV) and Vertical-Horizontal 
(VH). � e VV polarization is transmitted and received in the vertical direction. � is 
polarization is sensitive to the vertical structure of the target, such as vegetation 
canopy and roughness of the surface. It is commonly used for land applications such as 
vegetation mapping, soil moisture estimation, and urban area monitoring. In addition, 
it is sensitive to oil spills and can be used for marine applications. � e VH polarization 
is transmitted in the vertical direction and received in the horizontal direction. � is 
polarization is sensitive to the orientation of the target, such as man-made objects and 
surface roughness. It is commonly used for land applications such as detecting man-
made objects and monitoring infrastructure. It is also used for sea-ice monitoring and 
ship detection in marine applications [10].

Sentinel-1A provides SAR data with a spatial resolution of up to 10 meters and a 
swath width of up to 400 kilometres. It operates in di� erent modes including Stripmap, 
Interferometric Wide Swath, and Extra-Wide Swath modes, each with di� erent spatial 
resolutions and swath widths. � e data can be acquired in di� erent polarization 
modes, including single polarization and dual polarization modes [11].

EOS-4
EOS-04 was launched on 14-February 2022 by ISRO‟s own PSLV C-52. EOS-04 

is a Low Earth Orbit (LEO) satellite to be operated in a Sun Synchronous Polar Orbit 
(SSPO) with 6 AM-6 PM Equatorial Crossing Time (ECT) at an altitude of 524.87 km 
carrying a Synthetic Aperture Radar (SAR) payload. EOS-04 Spacecra�  is con� gured 
using ISRO‟s RISAT-1 heritage bus and capabilities are fully exploited with respect to 
accommodation, power generation, thermal management etc. EOS-04 SAR is capable 
of providing data in various resolution modes catering to a variety of applications as 
demonstrated in its precursor mission RISAT-1. � e main objective of EOS-04 mission 
is to provide continuity of data to the users. To cater to the applications, the SAR 
payload of EOS-04 shall operate in C-Band frequency range (5.4G Hz) and in Side-
Looking Radar mode with performance parameters for di� erent modes as speci� ed in 
the following sections. � e EOS-04 SAR will be operating in C-band at a frequency of 
5.4 G Hz. � e SAR system has been designed to provide constant swath for all elevation 
pointing for stripmap mode of imaging. Full-polarimetric mode has been introduced 
newly in EOS04. Quad (Full) polarization will be operational for FRS-1, FRS-2 and 
for ScanSAR MRS and CRS modes. Quad (Full) polarization is not available for HRS 
mode. HRS mode con� guration in EOS-04 is recon� gured with lower bandwidth (75 
MHz) according to available WLAN frequency band.

Experimental Setup

To develop the automation tool, a set of technical requirements were considered. 
Table 2 describes the technology stack used for implementation.

Table 2: Technology stack for the development of the automation tool.

S. No. Technology Use Case

1 Python Programming v3.6, v3.11

2 GDAL Data engineering

3 SNAP Python Interface Data preprocessing

4 ASF-Search Data acquisition

5 Scikit-learn Data classi� cation

6 PyQt5 GUI

Python (Python 3.6.0 and Python 3.11.0)
Python is a popular open-source programming language that provides 

improved process control features. It can create sophisticated multi-protocol network 
applications while simultaneously preserving a clear and simple syntax. Two versions 
of Python are required for the proposed work because of the compatibility issues with 
supporting Python interfaces like “snappy” (SNAP-Py interface) and “scikit-learn” 
for machine learning classi� cations. Python 3.6 is used for preprocessing geospatial 
images. Python 3.11 is used for training the model and predicting the classi� ed images 
using geospatial data abstraction techniques.

SNAP Python Interface
� e primary programming language for the implementation of SNAP (Sentinel 

Application Platform) is Java, and so is its API a Java API. But somehow, Python has 
been used here for the SNAP interface because its architecture describes that one 
can use both SNAP Engine and Desktop with Python too. Using SNAP with Python 
elevates the overall data preprocessing and accuracy of process outputs, such as terrain 
correction and speckle � ltering. It supports a very limited number of Python versions, 
i.e., Python 2.7, 3.3, and 3.6. In the proposed automation tool, Python 3.6 has been used 
to preprocess the satellite data (Standford Network Analysis Project).

For implementation through Python, the steps required for Con� gurations set up 
by the user in the SNAP Command Line are discussed and shown in Figure 1.

Install SNAP using the setup � le available online.
Keep clicking Next, since no customization is needed. Click on the Install button 

and close a� er installation.
Open ‘SNAP Command Line’ from Start.
Type cd C:\Program Files\snap\bin
Type snappy-conf C:\Python36\python.exe
Copy ‘C:\Users\*username\.snap\snap-python\snappy’ to ‘C:\Python36\Lib\site-

packages\\’
Users can set up a memory limit for SNAP to consume since its major drawback is 

memory and space management.
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GDAL (Geospatial Data Abstraction Library)
It is a Python library, released in 2000, used to manipulate and study geospatial 

data in raster and vector formats, e.g., ‘.tif ’ for raster, ‘.shp’ for vector. It is a free, open-
source library widely provided in the form of wheel � les for almost all Python versions. 
A good number of geospatial/remote-sensing-based so� ware uses this library in their 
backend programs, such as ArcGIS, QGIS, ERDAS, Google Earth, etc. GDAL wheel 
� les are usually available at the GDAL Documentation.

ASF-ALASKA Python Interface
ASF-Alaska is a website managed by NASA to download SAR spatial imagery. It 

has provided a Python interface namely “asf_search” which allows users to download 
required SAR satellite images.

It is simple to use and provides a bridge between NASA’s Alaska Satellite Facility 
Distribution Active Archive Center (ASF DAAC), which allows the user to download 
satellite data by specifying parameters such as start and end dates, � ight direction, 
platform, well-known text, processing level, and a relative orbit. To access it through 
Python, one needs to have a login username and password for authentication purposes 
[12].

SCIKIT-LEARN Machine Learning Library
It is a Python library used for the implementation of machine learning algorithms 

and techniques on a set of training and testing data. It consists of various regression, 
classi� cation, and clustering algorithms such as linear regression, logistic regression, 
SVMs, decision trees, random forest, gradient boosting, k-means, etc. to manipulate 
and apply the property of prediction and estimation on a given set of data.

� e proposed automation so� ware is used for working with random forests, 
decision trees, k-nearest neighbors, support vector machines, naïve Bayes, and multi-
layer perceptron.

Py-QT5 Technology
It is one of the options available in Python used to develop GUI-based applications 

to provide an easy-to-interact, user-friendly frontend so that the communication 
between processes and the end goal receiver becomes faster and clearer [13]. It comes 
with a set of tools, according to the user requirements; one of them being QtDesigner 
which has an interface very easy to use and design ‘.ui’ � les.

System Con� guration

Table 3 describes the ideal system con� guration for the e�  cient and smooth 
functioning of the automation tool.

Table 3: System con� guration for smooth functioning of the automation tool.

S. No. Requirement Type Con� guration

1 GPU NVidia

2 Workstation High-end

3 Installed RAM 16.0 GB or more

4 System Type 64-bit operating system, x64-based processor

Figure 1: SNAP Command-Line.

Methodology

� e existing work� ow by Filipponi describes the optimal approach for 
preprocessing SAR data to correct distortions and granular noises in the imagery [14]. 
A� er multiple hits, trials, and tests, a � ow of classi� cation and acreage forecasting was 
devised to bring about the desired outcomes of the data. Figure 2 shows the � ow of 
steps followed to estimate the spread of each crop in the satellite data.

� e data processing work� ow consists of preprocessing and classi� cation. Once 
the data has been preprocessed, calculations can be performed on each classi� ed crop 
class. � e automated work� ow is described in subsequent sections.

Data Download using ASF-Search

SENTINEL-1A
Due to high temporal resolution, the phenological information of the target crops 

can be easily captured by the satellite through the multi-date analysis. � e satellite 
captures imagery at a high spatial resolution of 10m and a temporal resolution of 12 
days. � e high temporal and spatial resolution of the Sentinel-1 data makes it perfect 
for the study of the monitoring of crops. � e satellite operates at a central wavelength 
of 5.04 GHz, at a spatial resolution of 10m, and a swath of 250 Km.

In this study, the data download is automated using a Python module called asf-
search which can be used to fetch the orbit number from the date of pass input by the 
user and calculate the relative orbit number using the formula:

Relative Orbit Number = mod (Absolute Orbit Number orbit - 73, 175) + 1

It is observed that Relative orbit numbers for the images with the same paths (12 
days’ time gap) are the same. Using the calculated relative orbit number, all the tiles 
from the input range of dates are downloaded to the setup path. � e user is provided 
with the choice to either download the data with the input of the area of interest 
shape� le or browse the data � les from the system. Data availability for EOS-4 satellite 
imagery is yet to be made public by its organization.

Preprocessing using SNAP-Py
Preprocessing for both SENTINEL-1A and EOS-4 has been approached in 

di� erent ways. � e Sentinel-1A data is available as Single Look Complex (SLC), and 
Ground Range Detected (GRD). For the current study, the GRD product of Sentinel-1A 
was employed and further pre-processed. � e GRD data products have already been 
focused, multi-looked, and projected in the ground range. Further preprocessing of 
the data was carried out to obtain the � nal backscatter image and values. � e data were 
pre-processed using the following steps:

Figure 2: Methodology.
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Speckle Filter using Lee Filter
� e speckle in the SAR imagery is the granular noise, which is mainly because of 

the interference of waves re� ected from many elementary scatters. Speckle � ltering is 
the process of reducing the granular noise present in the imagery to increase image 
quality. � is step is performed before radiometric calibration and terrain correction, 
so the speckle present in the image does not get propagated further. In the current 
study, the Lee � lter was used to perform speckle � ltering using a 3X3 window size 
[15]. � e large window size of 5X5 and 7X7 was avoided as at these window sizes small 
information is lost which can further a� ect the accuracy of classi� cation.

Radiometric Calibration
� e radiometric calibration process is done to convert the digital pixel values to 

radiometrically calibrated backscatter values [16]. To calibrate EOS-4 data, instead of 
using SNAP features, a formula to transform the pixel values is used 

Where
DN = backscatter value in the raw satellite image
i = incidence angle
k = calibration constant (HH or HV)
DN’ = modi� ed value of the pixel

Unit conversion of pixel values to decibels is also done here in both types of data using 
the formula:

Where
DN’’ = pixel value in decibel

Range Doppler Terrain Correction using SRTM 1 Sec (30m) HGT DEM Data
� e SAR data is majorly captured at a slanting angle, i.e., greater than 0°, therefore, 

there can be few distortions corresponding to a side-looking angle. Terrain correction 
is therefore carried out to eliminate these distortions and match the imagery to the 
actual e� ective world. � ese distortions are majorly caused by foreshortening and 
shadow using Digital Elevation Models (DEM). � e publicly available SRTM DEM 
data of 30m resolution was used to carry out Range Doppler terrain correction [17].

Feature Engineering
A� er the preprocessing, images from common date of the pass are seamlessly 

aligned to form a single mosaic. � e mosaic then undergoes an extract by mask 
process using the Crop Mask of the area of interest which � lters out the actual 
overall agricultural land in that area. It helps in cleaning the data, and makes it less 
computationally complex for the machine learning model. A� er all the preprocessed 
images are mosaiced, and crop masked, a single multi-layered stack is created to make 
it easier for the classi� cation, and extraction of backscatter coe�  cients from the 
images for calculating the zonal statistics of each crop class. In this tool, only mean 
statistic is used to plot the backscatter coe�  cient against all dates of passes for each 
crop class using the ground truth data.

Training data
Ground truth and land use categories were collected so that ground truth 

information is widely spread and represents all land use categories within the region of 
interest or district. � e ground truth information for both target and non-target crops 
was collected using MapPad so� ware. � e Polygon shape� les for each of the � elds 
for target and non-target crops were collected. To perform supervised classi� cation, 
good quality Ground Truth (GT) points or training data are required. GT points 
are the polygon or point features using which supervised classi� cation classi� es the 
images into di� erent categories. � e spread and number of training points play a 
signi� cant role in supervised classi� cation. As a thumb rule, the number of points for 
the optimum number of training points should preferably be 10 times the number of 
variables used in the classi� cation. � e larger the size of the training sample, the more 
the spread of training points, and the higher the accuracy. � erefore, theoretically, 
the total training points to be collected should equal 10 or 100 times the number of 
variables. For the current study, the number of variables di� ers with the region of 
interest. A common understanding is minimum of 10 variables will be present in each 
district therefore, the total points that can be collected are equal to approximately 100 
points for each crop type. � e higher number and spread over the district will capture 
the geographical variability in the crop. All the non-target classes in training samples 

should be present otherwise there is a chance of misclassi� cation. � e Ground truth 
points collected are split into training and validation points. Out of the total points, 
75% of the samples were used for training the model and 25% of the samples were taken 
to validate the � nal classi� cation result [18,19].

� e spatial distribution of training points also matters to achieve a higher 
classi� cation accuracy. In di� erent parts of the AOI, the classes or the crop in this case 
may have some di� erent variations and complications. � erefore, to better capture the 
dynamics of crops with varying sowing and harvesting times across the district, the 
spatial distribution of the training points should be well distributed across the region 
of interest.

Machine Learning-based Classi� cation
� e pre-processed image obtained from the above steps was further used for 

classi� cation. In the proposed study, ML algorithms have been used for image 
classi� cation. Many of them have been developed over the past decade to carry out 
the land use land cover classi� cation [20,21]. Out of all the available machine learning, 
Random Forest, Support Vector Machine, and K-Nearest Neighbor have gained 
much popularity as these algorithms are insensitive to noise data which makes them 
convenient to use in unbalanced data [22]. Here, the following algorithms have been 
used:

a) Random Forests
b) K-Nearest Neighbors
c) Support Vector Machines
d) Decision Trees
e) Naïve Bayes
f) Multi-Layer Perceptron

� ese classi� ers are the most utilized in Machine learning-based classi� cation 
studies. Table 4 De� nes the hyperparameter tuning that has been done to enhance the 
performance of the mentioned algorithms. 

Table 4: Hyperparameter tuning variables and their values of the used ML classi� ers.

S. No. Algorithm/
Classi� er Tuned Hyperparameters Used Values

1
Random 
Forests

Number of features to consider 
at every split

[‘sqrt’] [1000,2000] 
[3, 5] [1, 2] [True, 

False] 

Maximum number of levels in 
the tree

Minimum number of samples 
required to split a node

Minimum number of samples 
required at each leaf node

Method of selecting samples for 
training each tree

2
K-Nearest 
Neighbors

Leaf size

[1,50] [1,30] [1,2] Number of neighbors

Number of candidates

3
Support 
Vector 

Machines

Cost [0.1, 1, 5, 10] 
[1,0.1,0.01,0.001] 
[1,0.1,0.01,0.001] 

[‘rbf’, ‘poly’, 
‘sigmoid’]

Gamma

Kernel

4
Decision 

Trees

Splitter

[“best”, “random”] 
[1,3,5,7,9,11,12] 

[1,2,3,4,5,6,7,8,9,10] 
[0.1,0.2,0.3,0.4,0.
5,0.6,0.7,0.8,0.9] 

[“log2”, “sqrt”, None] 
[None,10, 20, 30, 40, 

50, 60, 70, 80, 90] 

Maximum depth

Minimum sample leaf

Minimum weight fraction leaf

Maximum features

Maximum leaf nodes
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5 Naïve Bayes
Priors

 [None, [0.1,] * 
len(number_of_

class)] [1e-9, 1e-6, 
1e-12]

Var smoothing

6
Multi-Layer 
Perceptron

Hidden Layer Size

[(10,30,10), (20,)] 
[‘tanh’, ‘relu’] [‘sgd’, 

‘adam’] [0.0001, 
0.05] [‘constant’, 

‘adaptive’]

Activation function

Solver

Alpha

Learning Rate

GUI and Testing

Graphical User Interface

A user-friendly graphical user interface was designed to ensure e� ective 
communication between the user and the system for clearer inputs to the so� ware. To 
set up the inputs, the main window i.e. Figure 3. is displayed. � e GUI � ow consists of 
a set of inputs, which includes choosing data type, operation type, and browsing AOI, 
ground truth data, and crop mask data. Figure 4 Shows a detailed � ow of user inputs 
for the GUI [23-26].

On clicking the DOWNLOAD button, the user can select the start and end date of 
Sentinel-1A data to be downloaded.

Experimentation and Testing on Sample Data

� e current test has been carried out with data from the Aligarh district of Uttar 
Pradesh, located between latitudes 27°57’N and 28°18’N and longitudes 77°48’E and 
78°61’E, in the southeastern part of the state. E. � e district is 193 meters above the 
mean sea level. � e great rivers Ganga and Yamuna, which come from the northeast 
and northwest sides, respectively, border the district. From the northwest, the Palwal 
district of Haryana, from the northeast, Badaun, from the north, Bulandshahar, from 
the north, Mathura, from the west to the southeast, Hathars, and from the south 
and east, Etah. � e district’s median annual rainfall is 662.8 mm (Department of 
Agriculture Cooperation & Farmers Welfare, 2019). � e district’s typical temperature 
is 25.2°C. � e 2011 census revealed that Aligarh has a population of roughly 3.67 
million (Census of India, 2011). � e district’s reported total area is 371300 ha, of which 
around 304000 ha are net sown (Agriculture, Cooperation and Farmers Welfare, 2012) 
as shown in Figure 5 [27-31].

Data Download

While downloading, a complete list of the data to be collected is displayed in the 
command line, along with the relative orbit of all the data � les as shown in Figure 6 
[32,33].

Figure 3: GUI window to enter user inputs.

Figure 4: GUI � ow for user inputs.

Figure 5: � e study area for testing.



Page 6/7

Copyright  : Goyal A

Citation: Goyal A, Aggarwal R, Mahajan S, Saran S (2025) Automated GUI-Based System for In-Season Crop Classifi cation and Acreage Estimation using 
Multi-Temporal SAR Data and Machine Learning. Arch Agri Res Technol 6: 1082

Backscatter Curve
A� er preprocessing, a backscatter curve is generated using the layer-stacked 

preprocessed image and the ground truth points for each crop class over the temporal 
data collected. Figure 7 shows the curve generated for the data from June 2022 to 
October 2022, and crop classes Arhar, Bajra, Cotton, Fallow Land, Jowar, Maize, Paddy, 
and Sugarcane. � e more the backscatter coe�  cient value the greater the probability of 
the crop class being present at the � eld during that time [34-37].

Classi� cation Report

A� er preprocessing, the image is classi� ed using the user-selected machine 
learning algorithm. Figure 8 shows the classi� cation results for a set of crop classes 
over the area of the Aligarh district generated as a part of an additional automated 
4-page report at the end to summarize a set of outputs. Figure 8(a) shows the 
resultant classi� ed image, the spatial representation of classi� ed values over the area, 
8(b) displays an evaluation table of performance metrics for the machine learning 
model, 8(c) shows a variable importance graph to provide a plot of most signi� cantly 
contributing image to the ML model in the layer stack, and 8(d) plots a confusion 
matrix to describe the di� erence between predicted and actual values of the classi� er 
for each crop class.

Conclusion

� is study presents a comprehensive and fully automated system for multi-crop 
classi� cation and acreage estimation using multi-temporal SAR datasets and machine 
learning algorithms. � e GUI-based tool e� ectively streamlines complex geospatial 
work� ows - ranging from data acquisition and preprocessing to classi� cation and 
reporting - thereby reducing manual intervention and operational overhead. With 
classi� cation accuracies exceeding 90% for key crops, the system demonstrates notable 
reliability across diverse agro-ecological regions. Compared to traditional methods, 
the proposed system improves predictive model performance, signi� cantly reduces 
processing time from several weeks to a few days, and optimizes memory usage 
based on user-de� ned parameters. Its intuitive design and robust backend make it 
scalable, reproducible, and user-friendly, even for non-expert stakeholders. Looking 
ahead, the integration of advanced deep learning techniques—such as Convolutional 
Neural Networks (CNNs) -alongside a richer set of annotated ground truth data holds 
promise for further enhancing classi� cation accuracy and spatial detail extraction. 
Such extensions can enable more nuanced modeling of crop phenology and support 
a wider range of applications in agricultural monitoring, yield forecasting, and 
climate resilience planning. Overall, the study underscores the transformative 
potential of automated SAR-based analytics in operational crop monitoring, o� ering 
a scalable solution that aligns with the goals of digital agriculture and evidence-based 
policymaking.
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