Introduction

The Bacillus thuringiensis crystal toxin proteins are widely used as biological control agents [1]. At sporulation, the bacterium produces one or more parasporal crystalline inclusions (δ-endotoxins), which are toxic to a wide range of insects (Orders Hymenoptera, Homoptera, Orthoptera, Mallophaga, Coleoptera). Once ingested by target insects, these crystal proteins (Cry proteins) are proteolytically activated in the larvae midgut and bind to membrane gut receptors, leading to cell pore formation and death [1]. One of the main characteristics of Cry toxins is its specificity, which suggests that it is mainly mediated by the specific binding to a surface receptor localized in the host midgut cells. The main receptors for the Cry toxin are cadherin-like proteins, Glycosylphosphatidyl-Inositol (GPI)-anchored Aminopeptidase-N (APN), GPI-anchored Alkaline Phosphatase (ALP) and an α-amilase [2]. Studies using Bacillus sp. evidenced a significant toxic activity against larvae of the important livestock parasite, the nematode Haemonchus contortus [3,4]. Bacillus thuringiensis var. israelensis (Bti) possesses more than one toxin within the range of 10-120 kDa (i.e., Cry4Aa, Cry4Ba, Cry11Aa and Cyt1Aa), however, the main toxicity effect for Haemonchus contortus larvae is mediated by Cry11Aa. We were able to confirm by cloning and expressed Cry11Aa in E. coli and demonstrated its major role in the Bti toxicity for Haemonchus contortus larvae [3]. We hypothesize that the integral membrane proteins HC23, H-GAL-GP and H11 present in the microvilli of Haemonchus intestinal cells might act as a putative receptor for Cry11Aa toxin. These membrane proteins consist of a family of microsomal aminopeptidases, a complex containing aspartyl and metallo proteases; and it is presumed that is involved in the digestion of the parasite blood meal [5]. Thus, this study aims, through bioinformatics, to predict a putative receptor for Cry11Aa Bti toxin in Haemonchus contortus larvae.

Materials and Methods

Bioinformatics analysis

To identify which receptor would be involved in the recognition of the toxin Cry11Aa in Haemonchus contortus, the amino acid sequence of Cry11Aa (Uniprot: P21256), H11 (Uniprot: Q10737), HC23 (GenBank: CD982660.1, CD983397.1) and H-GAL-GP (GenBank: AY253338.1, AY253331.1) were processed by I-TASSER [6] to predict their respective tertiary structures, which were evaluated using the Ramachandran Plot implemented in the Rampage server (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php). Based on these structures, the prediction of the Protein-Protein Interaction (PPIs) was performed using PyDOCK [7,8]. The results were visualized using PyMOL (https://www.pymol.org/).

Results

Bioinformatics analysis

Figure 1: The three structural domains of Cry11Aa indicated in the predicted structure generated by I-TASSER.
The result from the structure prediction made with I-TASSER for Cry11Aa is indicated in Figure 1, with indications of its 3 domains (II. II and III). The modes of binding predicted by PyDOCK between Cry11Aa and its potential receptors, are indicated in Figure 2, and binding energies are summarized in Table 1. For all potential targets (receptors) PyDOCK predicted a high affinity interaction, as demonstrated by the highly negative binding energies, and all receptors docked to the domain II of Cry11Aa.

Discussion

In this study we have demonstrated, using the Cry11Aa predicted structure, that the possible putative receptors for it are: the aminopeptidase H11, an intestinal membrane glycoprotein; the native somatic protein HC23; and H-GAL-GP containing glycoprotein complex (Figure 1 and 2). The protein structure prediction is still a hard task and is always limited by the availability of experimental data in public databases and proteins that share sequence similarity/homology (homology modeling) or structural similarity (threading modeling) with already-solved structures, which may be used as templates by the modeling algorithms [9]. However, the protein-protein interaction interface between Cry11Aa and HC23, H-GAL-GP and H11, predicted by PyDOCK, attributed a total energy (score) of -57.217, -72.817 and -68.367 kcal/mol respectively, for the interaction of Cry11Aa with these three proteins, thus suggesting that this interaction might occur in the larvae midgut cells (Table 1). The best characterized gut membrane proteins, or protein complexes, are known as H11 and H-gal-GP. The protein known as H11 is an integral membrane glycoprotein derived from the intestinal microvilli of the parasite. Based on its amino acid sequence and enzyme assays, H11 has been shown to be a microsomal aminopeptidase [10]. The fraction H-gal-GP has been termed Haemonchus galactose-containing Glycoprotein (H-gal-GP) complex since it binds selectively to lectins with a specificity for N-acetylgalactosamine. The proteins, respectively, consist of a microsomal aminopeptidase’s family, and a complex containing protective aspartyl and metallo proteases, and it is presumed that all three protease families are involved in the digestion of the blood meal [5]. The HC23 protein is a galectin present in adult worms of Haemonchus contortus, and its recombinant form showed that hemagglutinated human A, B, O, type, dog, rabbit, chicken and mouse erythrocytes, but did not hemagglutinate erythrocytes of the natural host (sheep) of Haemonchus contortus. For the Cry11Aa protoxin, proteolytic activation involves amino-terminal processing and intramembrane cleavage, leading to two fragments of 36 and 32 kDa that remain associated and retain insect toxicity [11]. One of the main characteristics of Cry toxins is its specificity, which suggests it is mainly mediated by the specific binding to a surface receptor localized in the host midgut cells. The main receptors for the Cry toxin are cadherin-like proteins, Glycosylphosphatidylinositol (GPI)-anchored Aminopeptidase-N (APN), GPI-anchored Alkaline Phosphatase (ALP) and an α-amidase [2]. In addition, glycolipids were proposed to act as Cry toxin receptors, as was demonstrated for the nematode Caenorhabditis elegans [12]. The caderin proteins have been identified as receptor for Cry11Aa in Aedes aegypti and Anopheles gambiae [13], and the GPI anchored proteins (aminopeptidase-N and alkaline phosphatase) have been reported to act as Cry11Aa receptors [14].

Another interesting attribute of Cry11Aa toxins activity is the synergistic effect with Cry1Aa toxin. Cry1Aa can bind to Cry1Aa through domain II loop regions, which are involved in receptor interaction [15], and this binding facilitates the formation of an oligomeric structure, which plays a role in cell pore formation, suggesting that Cry1Aa can have a role similar of the cadherin regarding oligomer formation [16]. The Cry1Aa toxin is a homolog of other Cry proteins toxic to different orders of insects, and probably requires at least one specific membrane receptor to bind to microvilli and cause toxicity through formation of transmembrane cationic pores [3]. For the Cry1Aa toxic activity to occur, an interaction with a receptor needs to happen, so the three putative protein receptors HC23, H-GAL-GP and H11 here identified suggesting that this interaction might occur in the Haemonchus contortus larvae midgut cells [17-25].

Conclusion

Briefly, our findings demonstrate the promising potential of HC23, H-GAL-GP and H11 proteins as putative receptors for Cry11Aa in Haemonchus contortus larvae. This finding may pave the way to develop new tools for the Haemonchus contortus control.

Acknowledgment

We like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES (Edital 032 – Parasitologia Básica) for de Lara, A.P.S.S scholarship.

Author Contributions

A.P.S.L. and F.P.L.L. conceived and designed the experiments; F.S.K. and L.S.P. performed the experiments; A.P.S.L. and F.P.L.L. analyzed the data; A.P.S.L. contributed reagents/materials/analysis tools; A.P.S.L. and F.P.L.L. wrote the paper.

References


Table 1: Summary of the PyDock analysis results for the interaction of Cry11Aa and its potential targets: HC23, H-GAL-GP and H11. The degree of affinity is measured as values of predicted free energies for the best binding mode, which are illustrated by the electrostatic free energy, desolvation free energy, Van der Waals free energy and an overall score. Energies are measured in kilocalories per mol (kcal/mol).

<table>
<thead>
<tr>
<th>Target</th>
<th>Electrostatic</th>
<th>Desolvation</th>
<th>Van der Waals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC23 (GenBank: AY253330)</td>
<td>-22.816</td>
<td>-34.089</td>
<td>-3.920</td>
<td>-57.217</td>
</tr>
<tr>
<td>HC23 (GenBank: AY253331)</td>
<td>-12.577</td>
<td>-49.680</td>
<td>90.662</td>
<td>-53.191</td>
</tr>
<tr>
<td>H-GAL-GP (GenBank: CD88397)</td>
<td>-5.954</td>
<td>-62.083</td>
<td>18.530</td>
<td>-66.184</td>
</tr>
<tr>
<td>H-GAL-GP (GenBank: CD92660)</td>
<td>-9.097</td>
<td>-72.478</td>
<td>87.580</td>
<td>-72.817</td>
</tr>
<tr>
<td>H11 (Unprot: Q10737)</td>
<td>-37.764</td>
<td>-39.266</td>
<td>86.267</td>
<td>-68.367</td>
</tr>
</tbody>
</table>

Figure 2: Prediction of the Protein-Protein Interactions (PPI) between Cry11Aa with its potential targets. HC23, H-GAL-GP and H11. PPIs were calculated by PyDOCK based on the predicted structures of these proteins generated by I-TASSER. The representation of the proteins and their predicted electronic surfaces was made using PyMOL.
desolvation for effective scoring of rigid-body protein-protein docking. Proteins
for rigid-body protein-protein docking using electrostatics and desolvation

characterization of a microsomal aminopeptidase from the intestine of the
nematode Haemonchus contortus. Biochem Biophys Acta - Protein Struct Mol
subsp. israelensis Cry1VD protein by Culex quinquefasciatus larval midgut
as receptors for Bacillus thuringiensis crystal toxin. Science 307(5711): 922-925.

aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus
phosphatase, and aminopeptidase N as receptors of Cry11Ba toxin from Bacillus

15. Cantón PE, Reyes EZ, De Escudero IR, Bravo A, Soberón M (2011) Binding of
Bacillus thuringiensis subsp. israelensis Cry4Ba to Cry1Aa has an important role
thuringiensis sp. israelensis Cry1Aa enhances activity of Cry11Aa toxin by
facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol
9(12): 2931-2937.

thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito,
18. Chen J, Aimanova KG, Pan S, Gill SS (2009b) Identification and characterization of
Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis
anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin
in Aedes aegypti larvae. Biochem J 394(Pt 1): 77-84.
toxin receptor structure and function. Entomopathogenic Bacteria: from
Laboratory to Field Application PP. 181-197.
AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a
fragment of AgCad1 synergizes toxicity. Biochemistry 47(18): 5101-5110.
phosphatase is a functional receptor of Bacillus thuringiensis jegathesan Cry11Ba
23. Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological
subsp. israelensis Cry1Aa synergizes Cry11Aa toxin by functioning as a
putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito