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Introduction

The Bacillus thuringiensis crystal toxin proteins are widely used as biological control agents [1]. At sporulation, the 
bacterium produces one or more parasporal crystalline inclusions (δ-endotoxins), which are toxic to a wide range of insects 
(Orders Hymenoptera, Homoptera, Orthoptera, Mallophaga, Coleoptera). Once ingested by target insects, these crystal 
proteins (Cry proteins) are proteolytically activated in the larvae midgut and bind to membrane gut receptors, leading to 
cell pore formation and death [1]. One of the main characteristics of Cry toxins is its specificity, which suggests that it is 
mainly mediated by the specific binding to a surface receptor localized in the host midgut cells. The main receptors for 
the Cry toxin are cadherin-like proteins, Glycosylphophatidyl-Inositol (GPI)-anchored Aminopeptidase-N (APN), GPI-
anchored Alkaline Phosphatase (ALP) and an α-amilase [2]. Studies using Bacillus sp. evidenced a significant toxic activity 
against larvae of the important livestock parasite, the nematode Haemonchus contortus [3,4]. Bacillus thuringiensis var. 
israelensis (Bti) possesses more than one toxin within the range of 10-120 kDa (i.e., Cry4Aa, Cry4Ba, Cry11Aa and Cyt1Aa), 
however, the main toxicity effect for Haemonchus contortus larvae is mediated by Cry11Aa. We were able to confirm by 
cloning and expressed Cry11Aa in E. coli and demonstrated its major role in the Bti toxicity for Haemonchus contortus 
larvae [3]. We hypothesize that the integral membrane proteins HC23, H-GAL-GP and H11 present in the microvilli of 
Haemonchus intestinal cells might act as a putative receptor for Cry11Aa toxin. These membrane proteins consist of a family 
of microsomal aminopeptidases, a complex containing aspartyl and metallo proteases; and it is presumed that is involved in 
the digestion of the parasite blood meal [5]. Thus, this study aims, through bioinformatics, to predict a putative receptor for 
Cry11Aa Bti toxin in Haemonchus contortus larvae.

Materials and Methods 

Bioinformatics analysis 

To identify which receptor would be involved in the recognition of the toxin Cry11Aa in Haemonchus contortus, the 
amino acid sequence of Cry11Aa (Uniprot: P21256), H11 (Uniprot: Q10737), HC23 (GenBank: CDJ92660.1, CDJ88397.1) 
and H-GAL-GP (GenBank: AY253330.1, AY253331.1) were processed by I-TASSER [6] to predict their respective tertiary 
structures, which were evaluated using the Ramachandran Plot implemented in the Rampage server (http://mordred.bioc.
cam.ac.uk/~rapper/rampage.php). Based on these structures, the prediction of the Protein-Protein Interaction (PPIs) was 
performed using PyDock [7,8]. The results were visualized using PyMOL (https://www.pymol.org/).

Results

Bioinformatics analysis
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Abstract

Objectives: Through bioinformatics analysis, predict Haemonchus contortus larvae putative receptors for Cry11Aa.
 
Results: Using a PyDOCK predicted high affinity interaction, as demonstrated by the highly negative binding energies of 
-57.2, -72.8, and -68.4 respectively for HC23, H-GAL-GP, H11, and all receptors docked to the domain II of Cry11Aa. 

Conclusion: These results suggest that Bti Cry11Aa toxin may use the proteins HC23, H-GAL-GP, and H11 as a receptor in 
Haemonchus contortus larvae and by doing so, carry out its nematicidal effect.

Figure 1: The three structural domains of Cry11Aa indicated in the predicted structure generated by I-TASSER.

http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
https://www.pymol.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Page 2/3

Copyright  Fábio Pereira Leivas Leite

Citation: Stori de Lara AS, Conrad NL, Kremer FS, Siva Pinto L, and Leivas Leite FP (2021) Putative Receptors for Bacillus Thuringiensis Var. Israelensis 
Cry11Aa in Haemonchus Contortus Larvae. Adv Res Org Inorg Chem 2: 1002

The result from the structure prediction made with I-TASSER for Cry11Aa 
is indicated in Figure 1, with indications of its 3 domains (I, II and III). The modes 
of binding predicted by PyDOCK between Cry11Aa and its potential receptors, are 
indicated in Figure 2, and binding energies are summarized in Table 1. For all potential 
targets (receptors) PyDOCK predicted a high affinity interaction, as demonstrated by 
the highly negative binding energies, and all receptors docked to the domain II of 
Cry11Aa.

Table 1: Summary of the PyDock analysis results for the interaction of Cry11Aa and 
its potential targets: HC23, H-GAL-GP and H11. The degree of affinity is measured as 
values of predicted free energies for the best binding mode, which are illustrated by 
the electrostatic free energy, desolvation free energy, Van der Wall free energy and an 
overall score. Energies are measured in kilocalories per mol (kcal/mol).

Discussion

In this study we have demonstrated, using the Cry11Aa predicted structure, 
that the possible putative receptors for it are: the aminopeptidase H11, an intestinal 
membrane glycoprotein; the native somatic protein HC23; and H-GAL-GP containing 
glycoprotein complex (Figure 1 and 2). The protein structure prediction is still a hard 
task and is always limited by the availability of experimental data in public databases and 
proteins that share sequence similarity/homology (homology modeling) or structural 
similarity (threading modeling) with already-solved structures, which may be used as 
templates by the modeling algorithms [9]. However, the protein-protein interaction 
interface between Cry11Aa and HC23, H-GAL-GP and H11, predicted by PyDOCK, 
attributed a total energy (score) of -57.217, -72.817 and -68.367 Kcal/mol respectively, 
for the interaction of Cry11Aa with these three proteins, thus suggesting that this 
interaction might occur in the larvae midgut cells (Table 1). The best characterized 
gut membrane proteins, or protein complexes, are known as H11 and H-gal-GP. The 
protein known as H11 is an integral membrane glycoprotein derived from the intestinal 
microvilli of the parasite. Based on its amino acid sequence and enzyme assays, H11 
has been shown to be a microsomal aminopeptidase [10]. The fraction H-gal-GP has 

been termed Haemonchus galactose-containing Glycoprotein (H-gal-GP) complex 
since it binds selectively to lectins with a specificity for N-acetylgalactosamine. The 
proteins, respectively, consist of a microsomal aminopeptidase’s family, and a complex 
containing protective aspartyl and metallo proteases, and it is presumed that all three 
protease families are involved in the digestion of the blood meal [5]. The HC23 protein 
is a galectin present in adult worms of Haemonchus contortus, and its recombinant 
form showed that hemagglutinated human A, B, O type, dog, rabbit, chicken and mouse 
erythrocytes, but did not hemagglutinate erythrocytes of the natural host (sheep) 
of Haemonchus contortus. For the Cry11Aa protoxin, proteolytic activation involves 
amino-terminal processing and intramolecular cleavage, leading to two fragments of 
36 and 32 kDa that remain associated and retain insect toxicity [11]. One of the main 
characteristics of Cry toxins is its specificity, which suggests it is mainly mediated by 
the specific binding to a surface receptor localized in the host midgut cells. The main 
receptors for the Cry toxin are cadherin-like proteins, Glycosylphophatidyl-Inositol 
(GPI)-anchored Aminopeptidase-N (APN), GPI-anchored Alkaline Phosphatase 
(ALP) and an α-amilase [2]. In addition, glycolipids were proposed to act as Cry 
toxin receptors, as was demonstrated for the nematode Caenorhabditis elegans [12]. 
The caderin proteins have been identified as receptor for Cry11Aa in Aedes aegypti 
and Anopheles gambiae [13], and the GPI anchored proteins (aminopeptidase-N and 
alkaline phosphatase) have been reported to act as a Cry11Aa receptors [14]. 

Another interesting attribute of Cry11Aa toxins activity is the synergistic 
effect with Cyt1Aa toxin. Cry11Aa can binds to Cyt1Aa through domain II loop 
regions, which are involved in receptor interaction [15], and this binding facilitates 
the formation of an oligomeric structure, which plays a role in cell pore formation, 
suggesting that Cyt1Aa can have a role similar of the cadherin regarding oligomer 
formation [16]. The Cry11Aa toxin is a homolog of other Cry proteins toxic to different 
orders of insects, and probably requires at least one specific membrane receptor to 
bind to microvilli and cause toxicity through formation of transmembrane cationic 
pores [1]. For the Cry11Aa toxic activity to occur, an interaction with a receptor needs 
to happen, so, the three putative protein receptors HC23, H-GAL-GP and H11 here 
identified suggesting that this interaction might occur in the Haemonchus contortus 
larvae midgut cells [17-25].

Conclusion

Briefly, our findings demonstrate the promising potential of HC23, H-GAL-GP 
and H11 proteins as putative receptors for Cry11Aa in Haemonchus contortus larvae. 
This finding may pave the way to develop new tools for the Haemonchus contortus 
control.
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