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Indoline, especially C5-nitro indoline is a kind of widely used nitrogen-containing compounds with high chemical 
reactivity, which can be used to prepare a variety of pharmaceutical or pesticide chemicals. Particularly, they demonstrated 
a wide range of biological and physiological activities in anti-tumor, anti-virus, anti-malaria, sterilization and other aspects. 
Therefore, various methods have been developed to prepare this valuable framework. However, excessive Lewis acids and bases 
are generally needed. Which make massive waste and poor functional group tolerance [1-6]. In recent years, the light-induced 
organic synthesis has received considerable attention [7-15]. Also, it has gained fast development and emerged as one of most 
promising concepts for nitrification reactions [16-23]. Here in, we describe the light-induced synthesis of C5-nitro indoline, 
which should provide inspiration for the development of the photochemical organic synthesis.We started to investigate the 
nitration of N-pyridyl indoline (1a) with Tert-Butyl Nitrite (TBN) under CeCl3 catalysis. To our delight, this Ce-catalysed C-H 
nitration occurred at the C5 position of N-pyridyl indoline (1a) to afford 5-nitro-N-pyridyl indoline product (2a). MeCN was the 
most efficient solvent among those solvents tested for this C5-nitration process (Table 1, entries 1-5). The photocatalyst affected 
the C-H nitration conspicuously. CeBr3 demonstrated the best catalytic activity and give the corresponding product in 89% 
yield. The use of AgNO3 and Fe(NO3)3 as the nitro surrogates could not give any product. However, the C5 nitration products 
were obtained in moderate yield when employing Cu(NO3)2 as the nitro source (Entry 11). The control reaction suggested the 
photocatalyst is essential for this process (Entry 12).

Table 1: Optimization of reaction conditions

Entry Cat (mol %) Nitro source Solvent Yield

1 CeCl3 (5) TBN (3.0) 1,4-dioxane 17

2 CeCl3 (5) TBN (3.0) DCE 22

3 CeCl3 (5) TBN (3.0) THF 11

4 CeCl3 (5) TBN (3.0) DMSO Trace

5 CeCl3 (5) TBN (3.0) MeCN 47

6 TBADT (5) TBN (3.0) MeCN 32

7 Eosin Y (5) TBN (3.0) MeCN 70

8 CeBr3 (5) TBN (3.0) MeCN 89

9 CeCl3 (5) AgNO3 (4.0) MeCN 0

10 CeCl3 (5) Fe(NO3)3 (4.0) MeCN Trace

11 CeCl3 (5) Cu(NO3)2 (4.0) MeCN 36

12 - TBN (3.0) MeCN 0

Reaction conditions: 1a (0.2 mmol), nitro source and photocatalyst, stirring in solvent (2.0 mL) at room temperature (25o 

C), Blue LED (4 W) for 24 h, Isolated yield.
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With the optimized condition in hand, the substrate scope of N-pyridyl indoline was 
examined. The functionalities, methyl, phenyl, ethyl and ester, at C2 or C3 position were 
well tolerated, furnishing the corresponding C5-nitrated products in good yields (2b-2f). 
Indoline with methyl substituent at C6 position was also found to be good substrate in 
this reaction, giving the desired product 2g in 75% yield. Substrates with C6 fluoride and 
chlorine atoms led to C5 nitration products 2h and 2i in 72% and 37%, respectively. To 
our surprise, C6 bromo indoline cannot give the desired product possibly due to the steric 
hindrance (2j). Interestingly, the efficiency of this nitration significantly decreased when 
replacing the pyridine with a non-coordinate benzene ring on the N atom (2l).

Reaction conditions: 1a (0.2 mmol), nitro source and photocatalyst, stirring in 
solvent (2.0 mL) at room temperature (25o C), Blue LED (4 W) for 24 h, Isolated yield.

In summary, we have developed a new light-induced nitrification reactions of in-
dolines under mild conditions. To best of our knowledge, this is the first example for pho-
tochemical organic synthesis of C5-nitro indoline. The method displays merits including 
green, safety, low-cost and simplistic operation. The frequently used substituted indoline 
substrates including N-pyridyl and N-phenyl can be well tolerated in our procedure. We 
believed this protocol should provide some inspiration for the development of environ-
ment-friendly organic transformation processes. The investigations on the mechanism 
and further application of our strategy are still ongoing in our laboratory.
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Figure 1: Scope of C5 nitration of N-pyridyl indolines
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