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Introduction

Incidences of forest fire are reasoned for both wildfires, occurring mostly naturally, sometimes manmade and prescribed or 
controlled fire as part of forest management system. Wildfire occur worldwide in different ecosystems, seasons and for different 
causes, lightning, volcanic eruptions, dry season, prolonged drought etc. as dry shoot, leaf litter or resin increases flammability. 
Lightning induced fire increased highly after 2000 [1]. According to Catalanotti [2], biomass burning practice in and adjacent 
area of forest leading to wildfire is very common in some countries. Controlled or prescribed fire in forest floor in early spring is a 
common practice and part in forest management worldwide. Wade and Lunsford [3] defined prescribed burning as “fire applied 
in a knowledgeable manner to forest fuels on a specific land area under selected weather conditions to accomplish predetermined, 
well-defined management objectives”. Prescribed burning is actually a burn plan that is a written procedure specific for the area 
including the objective, the restrictions, the desired fire effects, a map of the burning unit and the prescriptions [4]. The primary 
objective of prescribed burning is obviously for wildfire risk reduction. The objectives of prescribed burning are:- Reduce forest 
fire incidence by reducing inflammable materials in forest floor as- logs, litters; specially coniferous forest; Prepare sites for seed 
germination and establishment, especially for short time viable seeds; improve wildlife habitat; control plant disease; improve 
access of nutrients by adding ashes and fasten nutrient cycle [5]. The prescribed burning too sometimes become out of control 
for wind velocity, dry environment, lack of man power or negligence. Exhaustive analyses of effect of fire on forest animals, soil 
structure, microbial community, nutrient cycle, global increment of greenhouse gases, pathogen attack chances of fire injured 
plants, deformed timber; actually a study on ecosystem is needed to judge its necessity for all types of forest [6]. As heat, stress 
significantly affects plant growth and development by imparting 

1)	 Loss of plant vigor and inhibition of seed germination, 

2)	 Retarded growth rate, 

3)	 Decreased biomass production, 

4)	 Wilting and burning of leaves and reproductive organs, 

5)	 Abscission and senescence of leaves, 

6)	 Damage as well as discoloration of fruit, 

7)	 Reduction in yield and cell death and 

8)	 Enhanced oxidative stress [7]. 

Burning also affect soil physicochemical properties and soil biota. Fire had a strong negative effect on soil biota biomass, 
abundance, richness, evenness, and diversity. Fire reduced nematode abundance by 88% but had no significant effect on soil 
arthropods [8]. Negative effect on soil micro-biota, specially, mycorrhiza may affect the nutrient cycle in long run.

After Effect of Wild Fire on Plant and Soil

Post effects of fire vary with these factors:- season, weather, wind, precipitations, types of plant community composition, 
Phenology of trees, slope, topography, fuel load, soil moisture and soil organic matter content were also [9-11]. Phenologic status 
of the plant is directly related with the season. Depending on their growth stage, growing tissues are more sensitive to high 
temperatures than the dormant [12]. Types of vegetation is most important factor as some species are fire hardy, some adapted to 
fire for regeneration, others sensitive to fire [13,14]. In most cases, juveniles are adversely affected than mature trees. Spring fire 
was found to promote seedling emergence of shrub species in Australian grass-woodlands, and had little influence on seedling 
survival. In some cases, fire generates positive effects on plant communities, e.g. by rejuvenating, accelerating germination, 
by creating a mosaic of different vegetation types, resulting increasing biodiversity [12]. Reduced water availability can have 
important impacts on the competitive outcomes of neighbouring plants. These conditions favor invasion of non-mycorrhizal 
plants, mainly exotics and obnoxious weeds [15]. Fire may affect forest soil at different extents depending on its severity. Heat 
transfer to soil damages soil, therefore the most important factors is fire intensity [16] and duration [16, 17]. Soil heating mostly 
affects litter and humus layers AO or OO harbouring different beneficial microbes governing nutrient cycle. The temperature 
when rises to above 200 °C, organic matter in the upper layers vaporize leading formation of water-repellent soils [18]. During 
precipitations, the layer starts to disintegrate and soil structure breaks causing soil erosion [9]. The higher intensity fire results 
into complete loss of soil organic matter and volatilization of nitrogen, phosphorus and potassium but very high temperature 
is required for complete burning of Mn, Mg, Cu and other micronutrients. The soil microorganisms are mostly affected by 
high temperature. Effect of prescribed fire on physical, chemical, and biological properties [19] has been studied in different 
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Abstract

Both wildfire and prescribed burning results in imbalance in forest ecosystem by direct or indirect effects on soil, plants 
and microbes. The impact of fire varies with some factors-frequency and severity of fire, types of forest, plant species and 
edaphic properties. Most observations reported negative effect on soil micro-biota and increasing with fire severity, though 
bacteria are less affected than fungi, community alteration occurs for both. Reports on arbuscular mycorrhiza fungi are not 
enough; yet show alteration of species composition, abundance and colonization pattern, though help host plants to recover.
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forest ecosystems showed different results. Responses to fire vary in forest ecosystem 
types [20], fire severity [21]; fire type and frequency [20] and on the type of soil and 
vegetation cover [22]. Over by et al. [23] found significantly higher concentrations of soil 
ammonia and nitrate in the burned canopy areas, while available phosphorus appeared 
greater but this was not statistically significant. De Bano et al. [24] found that fire acted 
as a rapid mineralizing agent and that removal of the tree canopy further stimulated the 
mineralization of both nitrogen and phosphorous. Availability of nutrients after burning 
is often a short‐term phenomenon [25] and long-term alteration of soil structure [17]. 
The removal by fire of organic matter at the soil surface and in the top few centimetres 
of mineral soil can cause changes in soil structure. These changes may include decreases 
in soil pore size, which could lead to increased surface water runoff and erosion, and 
reduced water retention within the mineral soil. Increased burning frequency can reduce 
soil organic matter content and alter nitrogen availability [17]. 

Effect on Microbial Community

Burning can exert a positive, negative, or neutral effect on soil organisms that are 
often species specific [26]. Some microbes return to their original structure after some 
period of time [27]. Effects of prescribed burning on soil microorganisms in a Minnesota 
Jack pine forest showed to increase Streptomyces proliferation [28]. Relationship between 
microbial community structure and soil environmental conditions is variably correlated in 
a recently burned system [29]. It is observed that although there is a decrease in abundance 
of microbes following fire, the remaining microbes can have levels of activity that are 
greater than that of the microbial community prior to the fire [30]. These authors found 
that the increased rates of microbial processes, such as denitrification and production of 
methane and carbon dioxide, persisted for one year following fire. Sandra [31] observed 
in burned stands had a 52% and 56% reduction in soil microbial biomass and basal 
respiration respectively. Within burned stands, they found that microbial biomass and 
basal respiration was significantly declined with increasing fire severity, which in turn 
reduced the capacity of the soil microbial community to decompose soil cover for longer 
time scales. Fire severity can more strongly reduce microbial biomass [32, 33], and shift 
bacterial communities [33], compared to lower severity. The loss in microbial biomass 
during a fire depends upon the intensity and duration of the fire [34, 35]. Severe fire 
evidenced with reduced microorganism biomass and abundance up to 96%. Bacteria 
were more resistant to fire than fungi [8]. Microbial biomass nitrogen (Nmic) of pine 
forest was reduced by 22.2% to 37%, whereas in the oak forest its values were 8.8% to 
16.3% in uttarakhand, India. The overall change in soil microbial biomass carbon was 
63% and 40% at the burnt oak forest and burnt pine forest, respectively. [36]. Shen et al. 
[37] repoted long term repeated fire disturbance alters soil bacterial diversity but not the 
abundance in an Australian wet sclerophyll forest. Arthrobacter sp. and Blastococcus sp 
were found significantly increased in post-fire soils in a holm-oak forest in Spain [38]. 
Arthrobacter sp. was also found in a varied ecosystem of Canadian Boreal forest [39]. 
Arthrobacter may be able to survive fires due to its ability to resist starvation, desiccation 
and oxidative stress [40] drawing nutrition from fire-affected aromatic C sources [41] and 
may play a role in post-fire nitrogen cycling [42]. Arthrobacter may play an important 
role in the post-fire microbial ecosystem and increases in plant biomass. Penicillium 
is a common saprotrophic forest micro fungus [43], found growing in severely burned 
sites as first colonizer, and may be for the post-fire availability of nutrient and carbon 
source [44]. Mucor [45] too enhanced. Some other fire responsive bacteria found were 
Neurospora sp [46], Geopyxis sp [47] and Massilia sp [39] Aeromicrobium, Burkholderia 
Paraburkholderia [48]. Fimetariella rabenhorstii was significantly enriched with fire in 
boreal forest [49]. These most abundant fire-responsive bacterial taxa are genetically 
identical in the sequenced region to organisms that have been identified as aromatic 
C-degraders [50, 51] and most with significantly higher mean predicted 16S gene copy 
numbers for communities from more severely burned Sites; and most fire responders 
favour a low acidic pH while negative fire responders prefer neutral to high pH soil [40]. 
Members of Betaproteobacteria and Bacillus were only detected from the DNA left in the 
burnt site three months after the fire in a Pinus canariensis forest. Wildfire had a very 
pronounced negative effect on the soil microbial community not only in terms of its 
resistance to fire, but in resilience too. 

Effect on Arbuscular Mycorrhizae

The incidence of forest fire decreases the actinomycetes, fungal population and 
arbuscular mycorrhizal fungi (AMF) [52]. Generally, AMF-inoculated plants show 
better growth under heat stress than do the non-AMF-inoculated ones [53]. Different 
results from individual studies in different ecosystems and forests have hindered 
to reach a general conclusion about correlation among fire, mycorrhizal fungi, and 
ecosystem function. For example, studies have shown that wildfire can have negative 
[7, 54], neutral [55], or positive [56] effects on fungal diversity. Similarly, many studies 
have found an overall decrease in mycorrhizal colonization in post fire [57], while other 

studies have found no effect [58] or even increased colonization following fire [59]. Much 
of the published information appears contradictory, largely reflecting differences in 
experimental methodologies, fire intensities and timescales of the various studies [17]. 
Available information, however, suggests that soil fungal communities may be more 
sensitive to fire than bacterial community richness [51, 60]. In general, mycorrhizal 
taxa displayed particularly low tolerances for severe fire. Severe fires can yield greater 
mortality for host plants of symbiotic microbes as mycorrhizal fungi [56], reducing fungal 
abundance [61], and fungal diversity [56] density and alteration of species composition, 
which did not mediated by changed soil abiotic properties as before [62]. On the other 
hand, mycorrhizal fungi regulate C gains to the soil by facilitating the transfer of nutrients 
to plant roots [63]. Thus, the consequences of increased wildfire activity for soil C storage 
in boreal forests could depend on the sensitivities of each fungal group to fire severity. In 
moderate fire intensity, temperature not directly affect AM, but indirect affect by damage 
of host plant organ, in low severity they survive in host root and help to regenerate host by 
exploiting stored nutrients in cortical vesicles [58, 64]. Hewitt et al. [56] examined shifts 
in fungal community composition with fire severity in Alaskan tundra, and noted that 
relative abundance of dominant taxa tended to decline with fire severity. More severe burns 
tended to eliminate mycorrhizal fungi, lack of host plant is the another cause of resilience. 
Effect of fire frequency showed short intervals decreased overall root colonization, while 
long intervals arbuscular colonization, though presence of host plant is a factor [65] or 
availability of nutrients from slash in post fire period [66, 67]. Mycorrhizal colonization 
also decreases after fire when measured in situ [20]. Repeated burning overall may not 
affect fungal richness [20], but distinct fire-adapted fungal communities do develop in 
frequently burned forests (two- and three-year intervals [68]. Barraclough and Olsson 
[66] reported root colonization is known to both increase and decrease depending on the 
plant species and AM type, independently of changes in AM fungal abundance in post fire 
soil in dry tropical forest. Actually different AM species differ in degree of resilience. A 
recovery trend of microbial biomass was found in Boreal forests [69] and fungal richness 
in different sites [20], but these effects realized in long time after the fire.

Conclusion

Major research reports are done in temperate forest and effects on ectomycorrhizal, 
though fire incidents are very common in dry deciduous and tropical forests, information 
are not plenty. More works need to be done in these forests and affect microbial diversity 
and functions to assess the necessity of controlled burning or its interval.
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