Case Report

Octogenarian with Severe Left Ventricular Dysfunction and Cardiac Resynchronization Therapy-Defibrillator Device: Successful Anesthesia Management for Hip Arthroplasty

Harikrishnan Raj Thianesh1, Ashish Bangaari2*, Trevor Nair1, Krishnamoorthy Jaishankar3

1Department of Anaesthesia, MIOT International, Chennai, Tamil Nadu, India
2Department of Liver Transplant Anaesthesia and Critical Care, MIOT International, Chennai, Tamil Nadu, India
3Department of Interventional Cardiology, MIOT International, Chennai, Tamil Nadu, India

Abstract

Cardiac resynchronization therapy has emerged as a key component in management of advanced heart failure with reduced ejection fraction in selected subset of geriatric patients. The burgeoning burden of comorbidities, complexity of these devices and aging population presenting for surgeries necessitates peri-operative physicians to be cognizant and confident to handle these challenging cases. Limited literature about anesthesia management of patients implanted with these devices add to the situational challenge. We present a case of elderly gentleman with ischemic cardiomyopathy and cardiac resynchronization therapy-defibrillator device who underwent hip replacement under general anesthesia. Understanding the disease and the device are the crucial and definitive exigencies to manage such cases.

Introduction

Cardiovascular Implantable Electronic Devices (CIED) comprising of pacemakers, implantable cardioverter defibrillators, Cardiac Resynchronizing Therapy (CRT) devices and implanted rhythm monitors have emerged as lifesaving and life prolonging gadgets. Amongst them CRT, the most sophisticated type of CIED has promisingly surfaced as non-pharmacological therapy in Chronic Heart Failure (CHF). Rapidly developing technologies and expanding number of patients with these devices coming for noncardiac surgeries coerce understanding of these devices and the fundamentals behind the therapy. Many anesthesia practitioners lack the knowledge, experience, and requisite programming devices to independently manage these patients perioperatively which potentially can lead to deleterious patient effects and device damage. Concomitantly extremes of age, Left Ventricular (LV) dysfunction, rhythm disturbances and associated comorbidities additionally make these cases as high risk. Although the devices encountered nowadays are of increasing complexity, the vast majority of procedures can be safely performed in patients [1].

Case Presentation

An 83-year-old male (weight 65kg/height 164cm) presented to emergency department with left side unstable closed intracapsular sub-capital fracture neck of femur due to trivial fall. His medical history included Acute Myocardial Infarction (AMI) 28 years ago managed conservatively, followed by another episode of AMI 14 years back when he underwent coronary artery bypass with 3 grafts. After few years he had frequent hospitalization due to recurrent pulmonary edema and subsequent paroxysmal atrial fibrillation which did not resolve with diuretics and amiodarone. Transthoracic echocardiography revealed Left Ventricular Ejection Fraction (LVEF) of 22% with extensive regional wall motion abnormality. He received Quadra Assura MP™ CRT-D (St Jude Medical/Abbott, lake forest, IL, USA) device in left pectoral region 3 years back. Post CRT-D insertion his cardiac function improved to New York Heart Association class III and hospital admission reduced. He was non-smoker and non-alcoholic with diabetes mellitus 2 on oral hypoglycemics for past 5 years. Patient was scheduled for uncemented hip arthroplasty under general anesthesia after evaluation by a multi-disciplinary team of cardiologist, anesthetist, surgeon, intensivist and electrophysiologist. His daily medications included tab torasemide 10 mg, tab spironolactone 25 mg, tab amiodarone 100 mg on alternate days and tab aenocoumorhal 0.5 mg od. Device interrogation done 6 months before revealed 67% battery status and 96% pacing /sensing activity, satisfactory leads and pacing threshold, and pulse width within normal limits. Latest echocardiography disclosed dilated left atrium and ventricle, LVEF of 22%, regional wall motion abnormality with thinning and akinisia of mid antero-septum, apical septum, apex, basal and mid inferior and inferolateral wall, while only basal anterior and basal anterolateral wall were contracting, rest all segments were hypokinetic. Electrocardiogram (ECG) shows an atrial sensed biventricular paced rhythm pattern (figure 1) and chest x-ray (figure 2) revealed device with leads in situ and no signs of pulmonary edema. Rest laboratory parameters were grossly acceptable (table 1).

How to cite this article: Thianesh HR, Bangaari A, Nair T, Jaishankar K (2022) Octogenarian with Severe Left Ventricular Dysfunction and Cardiac Resynchronization Therapy-Defibrillator Device: Successful Anesthesia Management for Hip Arthroplasty. Corpus J Case Rep 3: 1024
The CRT-D device was programmed before induction of anesthesia with pacing (DDD) modality changed to DOO and defibrillator function de-activated. Instead, Automatic External Defibrillator (AED) pads were attached on right infracavicular and left inframammary region. Apart from antithrombotic all cardiac medications were administered as usual. Right internal jugular catheter was inserted with local anesthesia under ultrasound and fluoroscopic guidance with the guidewire manipulated carefully to avoid entangling with the leads. Catheter was fixed at the junction of right atrium and superior vena cava. Radial artery was cannulated for invasive Blood Pressure (BP) and pulse monitoring. The filter on the ECG monitor was put on diagnostic mode to display pacing spikes. Induction of anesthesia and the

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>12.8</td>
<td>g/dl</td>
</tr>
<tr>
<td>S.Urea</td>
<td>49</td>
<td>mg/dl</td>
</tr>
<tr>
<td>S.creatinine</td>
<td>1.3</td>
<td>mg/dl</td>
</tr>
<tr>
<td>S.Sodium</td>
<td>139</td>
<td>meq/L</td>
</tr>
<tr>
<td>S.Potassium</td>
<td>4.4</td>
<td>meq/L</td>
</tr>
<tr>
<td>S bicarbonate</td>
<td>25</td>
<td>meq/L</td>
</tr>
<tr>
<td>INR</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>aPTT</td>
<td>28.6</td>
<td>seconds</td>
</tr>
<tr>
<td>Hba1c</td>
<td>7.8</td>
<td>%</td>
</tr>
</tbody>
</table>

The CRT-D device was programmed before induction of anesthesia with pacing (DDD) modality changed to DOO and defibrillator function de-activated. Instead, Automatic External Defibrillator (AED) pads were attached on right infracavicular and left inframammary region. Apart from antithrombotic all cardiac medications were administered as usual. Right internal jugular catheter was inserted with local anesthesia under ultrasound and fluoroscopic guidance with the guidewire manipulated carefully to avoid entangling with the leads. Catheter was fixed at the junction of right atrium and superior vena cava. Radial artery was cannulated for invasive Blood Pressure (BP) and pulse monitoring. The filter on the ECG monitor was put on diagnostic mode to display pacing spikes. Induction of anesthesia and the

tracheal intubation were uneventful, using intravenous fentanyl 200 μg, etomidate 10 mg, midazolam 1 mg and 35 mg of atracurium. Anesthesia was maintained with sevoflurane (0.9-0.8%) in oxygen-air. Hypotension was managed by norepinephrine infusion and phenylephrine boluses to target mean arterial pressure above 70 mm Hg (figure 3). Electrosurgical plate was inserted to contralateral thigh and surgical team was requested to announce and minimally use monopolar electrosurgery with short burst only. Surgery was successfully concluded in lateral position with no adverse events or interactions occurring between the electrosurgery and CRT-D settings. The total anesthesia and surgical time were 1h and 35min and 1 h and 5 min respectively. Totally 400ml of crystalloid was infused with around estimated 200ml blood loss.

Patient was gradually awakened and successfully extubated in the intensive care unit with warming blanket to prevent shivering. After weaning off vasoressors and reassuring surgical wound drains the CRT-D device was reprogrammed with defibrillator function activated while AED pads were discontinued. Device interrogation revealed no ventricular or atrial arrhythmia episodes. Post operative pain was controlled with intravenous fentanyl and paracetamol. Intensive cardiac monitoring was continued till he was transferred to the ward on day 2. He was safely discharged of day 8 without any deterioration of cardiac function.

Discussion

Cardiovascular diseases affecting older adults disproportionately, contribute to disability and diminish their quality of life. Geriatric population is predisposed to developing CHF as a result of age-related changes in the cardiovascular system, hypertension, coronary artery disease and valvular heart disease [2]. The incidence and prevalence of HF rises steeply with age, the mean age at first diagnosis being 76 years, with about half of this patient having a LVEF of less than 50% [3] CRT has been shown to reduce sudden cardiac death and heart failure hospitalizations along with improvement in symptoms, quality of life and functional class in selected elderly population. It is a validated strategy for improving cardiac pump function through biventricular pacing in patients CHF with LVEF< 35 %, inter-ventricular conduction delay and mechanical dysynchrony, who are symptomatic despite optimal medical treatment. CRT can be achieved with a device designed only for pacing (CRT-P) or with the added capability for defibrillation (CRT-D) [4]. Traditionally CRT the most complex type of CIED device with different sensors and automatic algorithms, have been clubbed with general CIED practice advisories, therefore its clinical data on the peri-operative management and outcome are limited. Furthermore, CRT carriers are older with frequent comorbidities and are implanted for advanced CHF, which itself is a known independent risk factor for unfavorable outcomes [5].

Patient assessment and Anesthesia

In addition to a thorough cardiovascular history and physical examination, specific consultation and recommendation from cardiology and CIED team (physicians, technicans, electrophysiologist, device manufacturer) about indication for implantation, type, function, underlying rhythm, response to placement of magnet, interrogation and management of the device needs to be elicited. The peri-operative team including the surgeons and anesthetist need to communicate the exact nature of the procedure to the CIED team, including possible sources of Electromagnetic Interference (EMI), surgical position, anesthetic plan, drugs, fluid and electrolyte management, availability of telemetry perioperatively, and expected postoperative management [6]. The optimal anesthetic management must assess the patient's

Acknowledgement

We express our special thanks to Dr. Sujitbra Chackalakal, Consultant, Department of Anaesthesia, MIOT International for assisting in drafting the manuscript and the figures.

References


Citation: Thianesh HR, Bangaari A, Nair T, Jaishankar K (2022) Octogenarian with Severe Left Ventricular Dysfunction and Cardiac Resynchronization Therapy-Defibrillator Device: Successful Anesthesia Management for Hip Arthroplasty. Corpus J Case Rep 3: 1024

Acknowledgement

We express our special thanks to Dr. Sujitbra Chackalakal, Consultant, Department of Anaesthesia, MIOT International for assisting in drafting the manuscript and the figures.

References