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Introduction

Due to the intricacy of the Earth’s system and the vast quantity of variables involved in weather and climate phenomena, 
meteorological research imposes quests that transcend traditional disciplinary boundaries [1, 2]. Climate and weather research 
mainly hinge on the availability of physical data. Instrumentation and numerical modelling provide a quantitative and objective 
mean of describing the current state of the atmosphere [3]. For that reason, climate science is one of the most data-rich domains in 
terms of volume, velocity, and variety (commonly referred to as Big Data’s 3Vs) [4]. Whether produced by numerical simulations 
or gathered through remote sensing and in-situ measurements, the resulting data is often noisy and cumbersome, which 
restrains the analysis to techniques insensitive to those misfortunes. Additionally, the frequent and continuous development of 
new instruments leads to data heterogeneity in long-term studies [5], which may be unfavourable to some analysis tools. Earth 
sciences bring forth research questions related to the evolution of events in space and time. For this reason, meteorological 
data inevitably presents a spatiotemporal nature. This implies that measurements close in time and space tend to be highly 
correlated or similar, which means that the data tend to be smooth, blurring the feature boundaries. Therefore, some pattern 
mining methods that make implicit or explicit independence assumptions about the input data will most likely fail to track these 
features [6]. Some of the limitations described previously should be overwhelmed with the adoption of Topological Data Analysis 
(TDA) tools to explore the data. TDA offers a significant advantage over more conventional tools based on cluster analysis, as it 
focuses on global properties like the shape and connectivity of the data [7]. Primarily, Topological Data Analysis is an assemblage 
of statistical methods that and structure in data [8].

Patterns in Meteorology

In the atmosphere, clouds present itself usually isolated or bundled together. The patterns described by their organisation 
are often meaningful, such that some atmospheric phenomena are distinguishable, when viewed from above, based solely on the 
clouds features (i.e. temperature, type, content) and formation [9]. For example,in hurricanes the clouds form a unique circular 
structure around the eye, similar to a doughnut surface, making it very distinct from other types of storm. When it comes to 
surface studies, it is the geometry, organisation and cover of the surface structures that dictates the interaction with the atmosphere 
locally. For instance, cities with closely built high constructions and surface mostly covered with impervious materials of high 
heat capacity tend to experience higher temperature than the surrounding rural hinterlands [10]. The constraints described 
above indicate that traditional data mining tools involving linear separation may not withstand the limitations imposed by the 
aspects of physical measurements as that linear decision boundaries are often not sufficient to classify the data patterns with high 
accuracy [11]. Opportunely, the approximate shape of cloud as well as surface cover and texture can be meaningful features to 
describe the state of the atmosphere and local meteorological patterns from the TDA perspective. Recently, meteorological time-
series data was examined from the viewpoint of dynamical systems with the aid of Morse Graph method for Stochastic Time-
Series Data (MGSTD) [12]. The outcomes of the study illustrate an extension of such dynamical time-series analysis, which can 
capture unstable dynamics and attractors (i.e. characteristic behaviour in dynamic systems). Another TDA tool, named Persistent 
Homology (PH) was performed over five dimensional dataset of buoy measurements containing around 180000 data points 
[13]. The filtration process made it viable to detect anomalous changes in the measurements of wind components through the 
chain graphs, that are related to periods of El Niño occurrence. PH was also applied together with machine learning to identify 
atmospheric rivers in the west coast of the United States [14]. The data used for that was the integrated water vapour from climate 
reanalysis. The main challenge in this case was to construct the input to a Support Vector Machine (SVM) that would perform 
the class cations in a threshold-free form. PH was used then to mark the exact moment of birth of the complete structure of 
an atmospheric river, and the descriptor of these states were then fed to the SVM. Exploiting remotely sensed data, PH was 
performed to track H1 topological invariants in brightness temperature field over Tropical Cyclones (TCs) [15]. Those features 
were related to the TC diurnal cycle. Through that, the authors were able to identify the behaviour and quantify diurnal pulses in 
Hurricane Felix in an automated threshold free approach.

Summary

Atmospheric research is currently a data rich domain. The ability to harness the large amount of available data is toughly 
affected by intrinsic aspects of the measurements: such as high dimensionality, presence of noise, strongly correlated variables, 
missing values and the great heterogeneity of origins. Still, some relevant meteorological characteristics are preserved in hidden 
data features of shape and connectivity. Therefore, TDA shows great potential for meteorological research for being resilient tom, 
the listed adverse properties of the data and for enabling a high dimensional analysis. Then, TDA tools may provide new insights 
and bring forth high dimensional relations among meteorological variables that were not yet perceived.
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Abstract

Meteorology is currently built on a variety of measurements from several sources. The means to gain insight over the 
amount of available data are subject to intrinsic characteristics of the data. In this context, Topological Data Analysis (TDA) 
tools offer the possibility to overcome those limitations and harness a huge amount of data. Due to its roots in Group Theory, 
TDA can be intimidating and is yet underexplored in Meteorology. The current review aims to prospect some of TDA’s 
capabilities in Atmospheric Sciences and provide insights on possible applications.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Page 2/2

Copyright   Sena CAP 

Citation: Sena CAP and Franca JRdA (2021) Topological Data Analysis applications in Meteorology, Environ Sci Ecol: Curr Res 2: 1024

References

1.	 ZP Majdik, CA Platt, M Meister (2011) Calculating the weather: Deductive 
reasoning and disciplinary telos in cleveland abbe’s rhetorical transformation of 
meteorology. Quarterly Journal of Speech 97(1): 74-99.

2.	 F Williamson (2021) Building a long-time series for weather and extreme weather 
in the Straits Settlements: a multi-disciplinary approach to the archives of 
societies. Climate of the Past 17(2): 791-803.

3.	 J Coleman, K Law (2015) Meteorology.

4.	 JT Overpeck, GA Meehl S Bony, DR Easterling (2011) Climate data challenges in 
the 21st century. science 331: 6018: 700-702.

5.	 NB Chang, K. Bai (2018) Multisensor Data Fusion and Machine Learning for 
Environmental Remote Sensing. CRC Press.

6.	 JH Faghmous and V Kumar (2014) A Big Data Guideto Understanding Climate 
Change: The Case for Theory-Guided Data Science. Big Data 2(3): 155-163.

7.	 J Murugan, D Robertson (2019) An introduction to topological data analysis for 
physicists: From lgm to frbs. arXiv preprint arXiv: 1904-11044.

8.	 L Wasserman (2018) Topological data analysis. Annual Review of Statistics and Its 
Application 5: 501-532.

9.	 M Bader, G Forbes, J Grant, R Lilley, A Waters, et al. (1982) Images in weather 
forecasting, a practical guide for interpreting satellite and radar images. 
Atmospheric Research 43(2): 203-203.

10.	 TR Oke (1982) The energetic basis of the urban heat island (Symons Memorial 
Lecture, 20 May1980). Quarterly Journal. Royal Meteorological Society 108(455): 
1-24.

11.	 G Mountrakis, J Im, C Ogole (2011) Support vectormachines in remote sensing: A 
review. ISPRS Journal of Photogrammetry and Remote Sensing 66(3): 247-259.

12.	 H Morita, M Inatsu, H Kokubu (2019) Topological computation analysis of 
meteorological time-series data. SIAM Journal on Applied Dynamical Systems 
18(2): 1200-1222.

13.	 B Rieck, H. Leitte (2014) Structural analysis of multivariate point clouds using 
simplicial chains. in Computer Graphics Forum 33: 28-37.

14.	 G Muszynski, K Kashinath, V Kurlin, M Wehner (2019) Topological data analysis 
and machine learning for recognizing atmospheric river patterns in large climate 
datasets. Geoscientic Model Development 12(2): 613-628.

15.	 S Tymochko, E Munch, J Dunion, K Corbosiero, R Torn (2020) Using persistent 
homology to quantify a diurnal cycle in hurricanes. Pattern Recognition Letters.

https://eric.ed.gov/?id=EJ915017
https://eric.ed.gov/?id=EJ915017
https://eric.ed.gov/?id=EJ915017
https://cp.copernicus.org/articles/17/791/2021/
https://cp.copernicus.org/articles/17/791/2021/
https://cp.copernicus.org/articles/17/791/2021/
https://pubmed.ncbi.nlm.nih.gov/21311006/
https://pubmed.ncbi.nlm.nih.gov/21311006/
https://www.routledge.com/Multisensor-Data-Fusion-and-Machine-Learning-for-Environmental-Remote-Sensing/Chang-Bai/p/book/9780367571979
https://www.routledge.com/Multisensor-Data-Fusion-and-Machine-Learning-for-Environmental-Remote-Sensing/Chang-Bai/p/book/9780367571979
https://pubmed.ncbi.nlm.nih.gov/25276499/
https://pubmed.ncbi.nlm.nih.gov/25276499/
https://arxiv.org/abs/1904.11044
https://arxiv.org/abs/1904.11044
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98EO00322
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98EO00322
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98EO00322
http://www.patarnott.com/pdf/Oake1982_UHI.pdf
http://www.patarnott.com/pdf/Oake1982_UHI.pdf
http://www.patarnott.com/pdf/Oake1982_UHI.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0924271610001140
https://www.sciencedirect.com/science/article/abs/pii/S0924271610001140
https://epubs.siam.org/doi/abs/10.1137/18M1184746?mobileUi=0
https://epubs.siam.org/doi/abs/10.1137/18M1184746?mobileUi=0
https://epubs.siam.org/doi/abs/10.1137/18M1184746?mobileUi=0
https://dl.acm.org/doi/10.1111/cgf.12398
https://dl.acm.org/doi/10.1111/cgf.12398
https://gmd.copernicus.org/articles/12/613/2019/
https://gmd.copernicus.org/articles/12/613/2019/
https://gmd.copernicus.org/articles/12/613/2019/

	_GoBack

