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Introduction:
Due to its advantages of light weight, good toughness, excellent high temperature performance, biocompatibility and 

corrosion resistance, titanium alloys are widely used in aerospace and automotive industries, biomedical components and 
surgical instrument manufacturing, chemical and petrochemical engineering, marine applications and other fields [1-5]. 
Although the potential is great, the production of titanium and titanium alloys is usually low due to high costs since the very 
high processing temperature (pure Ti, melting point (m.p.)=1668 °C; Ti6Al4V alloys, m.p.=1640 °C; TiAl(γ)alloys, 42~50 at.% 
Al, m.p.=1485~1575 °C; TiNi alloys, m.p.=1240~1310 °C). Unfortunately, at such high temperatures, molten titanium becomes 
extremely active, and it is chemically corrosive to almost anything it comes into contact with [6]. How to obtain titanium and 
titanium alloys with low cost, high purity, uniform microstructure and excellent performance is a real problem to be solved at 
present.

Methods for Preparing Titanium and Titanium Alloy:
To obtain titanium alloy products, casting is indispensable, of course, powder metallurgy can also be selected, but the 

powder metallurgy routes has some disadvantages such as ingot chemical and microstructural heterogeneity, components 
geometry are limited, porosity leads to serious oxygen contamination, and high cost [7]. Thus, casting seems to be the first way 
to obtain high quality titanium alloy products at low cost. However, due to the active chemical nature of molten titanium, it is 
easily contaminated, such as oxygen and nitrogen in the air, and the crucible material used for melting. Therefore, the preparation 
process of titanium alloy must be carried out in a vacuum or inert protective atmosphere, which will undoubtedly increase the 
cost of production, and more importantly, how to select a suitable crucible refractory. Although with the rapid development of 
metallurgical technology, some new concepts of melting titanium alloys have been developed, such as levitation melting (LM) [8] 
and Cold Crucible Melting or Skull Melting (CCM/SM) [9], the core idea of which is to avoid direct contact between the molten 
metal and the crucible. LM technique uses electromagnetic force or gas pressure to suspend the molten metal, while CCM/SM 
technique forms a solid skull with the same composition as the parent alloy on the surface of the water-cooled copper crucible. 
According to different heating principles, CCM/SM technique has spawned various techniques such as Vacuum Arc Remelting 
(VAR) [10], Induction Skull Melting (ISM) [11], Electron Beam Melting (EBM) [12], and Plasma Arc Melting (PAM) [13]. 
However, LM technique is obviously not suitable for large-scale production. VAR technique needs to press the pre-electrode 
before melting, which not only increases the cost but also requires high cleanliness of raw materials. In addition, the inclusion and 
segregation of VAR castings are serious, which requires multiple remelting and long subsequent heat treatment. ISM technique, 
due to a part of the heat has taken away by the water-cooled copper crucible, which results in low energy efficiency and is not easy 
to form superheat molten metal, as well as heterogeneous composition and microstructure of castings. EBM and PAM technique 
also have the problem of low superheat, only superheat near the heat source, resulting in poor fluidity of the molten metal. What’s 
more, EBM technique will lead to the volatilization of element with high evaporation pressures, such as Al, Sn, Cr, etc., so that 
the fluctuation of ingot composition is difficult to control. In general, contactless melting technique has its advantages, but its 
disadvantages are also obvious. Perhaps in the future, various heat sources can be integrated, combined with the advantages of 
all parties, through numerical modeling and analysis, to further understand the distribution of temperature field in the melting 
process, so as to optimize the entire process.

Since the preparation method without direct contact with the crucible has low energy efficiency, high cost and heterogeneous 
composition and microstructure of the ingot (generally requires subsequent processing and modification, which further 
increases the cost), so it goes back to the previous point of view-choose the appropriate crucible refractories are particularly 
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Abstract

Attributed to the high processing temperatures and high chemical activity of titanium and titanium alloys, it has become 
serious obstacles for the current industrial production of high-quality titanium and titanium alloys. Based on the cost and 
quality of production, this review evaluates the current main techniques for the preparation of titanium and titanium alloys, 
and finds that the conventional induction melting still has irreplaceable value. Subsequently, a variety of refractories that 
can be used for melting titanium and titanium alloys were sorted out, and a quite promising refractory, BaZrO3 composite, 
was introduced
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importantThe development of inert and durable refractories for melting titanium alloys 
is definitely valuable work. Refractories that need to be used and in close contact with the 
melt are mainly Vacuum Induction Melting (VIM) [14,15]. Compared with other melting 
methods, because the thermal conductivity of refractory materials is generally lower, VIM 
technique allows the metal liquid to superheat, and the composition and microstructure 
of the casting are more homogenization due to electromagnetic stirring. More valuable, 
VIM technique is inexpensive and suitable for large-scale industrial production. The most 
critical part of VIM is how to choose refractories that are inert, durable and inexpensive, 
so as to apply to industrial production.

Selection of Refractories:
In the past two decades, in order to find suitable refractory materials for melting 

titanium and titanium alloys, various high-temperature ceramic materials such as oxides, 
carbides, nitrides, silicides, sulfides, and borides have been evaluated, but the results have 
been not satisfying [16]. For example, BN and AlN ceramic crucible melting titanium 
alloy will cause interface reaction [17,18], while using graphite crucible will cause carbon 
contamination of the titanium alloy [19]. Among the most used ceramic oxides, generally 
only Al2O3, ZrO2, CaO, and Y2O3 meet the relevant thermodynamic considerations 
(Figure 1). But Al2O3 and ZrO2 will form an inevitable reaction layer with the titanium 
alloy melt at the interface [20,21]. Due to thermodynamically stable and inexpensive, 
CaO is a very promising refractory for melting titanium alloys, but CaO crucibles have 
poor water resistance and high oxygen content in melted titanium alloys. Studies have 
shown that the contamination of Y2O3 crucibles for titanium alloys is far less than other 
refractories, but expensive and poor thermal shock resistance are fatal flaws. It can be seen 
that a single refractory material will always have one or other defects, and it is difficult to 
meet all needs. Faced with this situation, how should we choose? In order to solve this 
problem, two ideas of coating [21,22] and doping [23-26] came into being. For example, 
the corrosion resistance of Y2O3 crucible is good, but the cost is high and the thermal 
shock resistance is poor, while the performance of Al2O3 crucible is just the opposite. 
Therefore, Y2O3 can be coated on the inner wall of the Al2O3 crucible. The formed Y2O3/
Al2O3 crucible perfectly combines the advantages of the two materials and avoids the 
disadvantages of both sides. There are also many examples of doping, such as CaO doped 
ZrO2, BaO doped ZrO2 (CaCO3 or BaCO3 and ZrO2 are solid-phase sintered at a molar 
ratio of 1:1 to form CaZrO3 or BaZrO3) [26-29]. CaZrO3 and BaZrO3 are perovskite 
refractories and meet the thermodynamic conditions for melting titanium and titanium 
alloys (Figure 1). Since BaZrO3 has higher thermodynamic stability than CaZrO3, and 
literature shows that BaZrO3 crucible has less contamination to titanium alloy than Y2O3 
crucible (Figure 2), so we will focus on BaZrO3 refractories.

According to the previously mentioned ideas, a single refractory material is difficult 
to meet all needs [30]. Even if the performance of the BaZrO3 crucible is already very 
good, we can also dope with other refractories in order to pursue a more perfect effect. For 
example, BaZrO3 crucible doped with CaO [24] or Y2O3 [25,31], in order to determine 
the best doping ratio, can be guided by the ternary phase diagram. (Figure 3) shows 
the isothermal section of BaO-ZrO2-YO1.5 and BaO-CaO-ZrO2 at 1750 °C and 1820 
°C, respectively. In order to avoid mismatch of physicochemical properties of different 
phases, the composition of materials should be controlled in the single-phase region or 
two-phase region with similar properties [32]. Therefore, refractory materials located in 
the BZ and BCZ phase reigns are the most likely candidates for melting titanium alloys. 
(Figure 4) shows the SEM images of surface microstructure of BaZrO3 crucible with 
different doping. (Table 1) lists the energy-dispersive spectroscopy (EDS) results that 
were taken in regions indicated in (Figure 4). It can be seen from the (Figure 4(a)) that 
the densification of the BaZrO3 crucible is excellent. Although the densification will be 
slightly reduced after doping with CaO or Y2O3, the exciting thing is that the grain size 
is significantly reduced (Figures 4(b) & (C)), mainly because CaO or Y2O3 will become 
the nucleus point (Table 1), the formation of new phases also has the effect of hindering 
the movement of the grain boundary, which will undoubtedly increase the strength of the 
material. (Figures 4(d) & 4(e)) is the doping of different molar amounts of CaZrO3, which 
can form a microstructure inlaid with small and large grains. This special microstructure 
will improve the bundling and densification of crucible, which is conducive to improving 
the thermal shock resistance and Corrosion resistance of the crucible, and the crucible 
will be more durable. Of course, excessive addition of CaZrO3 will also have a counter-
productive effect (Figure 4(d) & Table 1).

Figure 5 shows the erosion of the metal-crucible interface. Analysis the composition 
of the three points A, B and C by EDS and the morphology of the metal-crucible interface 
in (Figure 5(a) &Table 2). It can be seen that the TiNi alloy corrodes the CaO crucible 
more seriously. In contrast, the thickness of the interface reaction layer of CaZrO3 and 
TiNi alloy is about 30μm (Figure 5(b)). Even better, the thickness of the interface reaction 
layer of BaZrO3 and TiNi alloy is only about 8μm (Figure 5(c)). Best of all, there is almost 
no interface reaction layer between the Y2O3-doped BaZrO3 crucible and TiNi alloy 

(Figure 5(d)). It can be seen that compared with CaO and CaZrO3 crucibles, BaZrO3 
crucibles are more effective for preparing TiNi alloys, and the performance of Y2O3-
doped BaZrO3 crucible has been further improved. This may be because Y+3 occupies the 
lattice position of Zr+4 to form two new phases, BaZr1-xYxO3 and Ba2YZrO6 [25], and the 
new phases are widely distributed at the grain boundaries (Erosion generally starts at the 
grain boundaries), thus resisting the corrosion of TiNi melt. Considering the high cost 
of the BaZrO3 crucible, it is possible to adopt the idea of coating. For example, the cost-
effectiveness of the BaZrO3/Al2O3 crucible is very attractive [33,34].

Figure 1: Variation of standard free energies of formation of some relative 
oxides with temperature.

Figure 2: : Microstructure of TiAl alloys melted by (a) Y2O3 crucible [30] and 
(b) BaZrO3 crucible [29].

Figure 3: (a) The isothermal section of BaO-ZrO2-YO1.5 at 1750 °C [32]; (b) 
The isothermal section of BaO-CaO-ZrO2 ternary system at 1820 °C [33].
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Table 1: The EDS results were taken in regions indicated in (Figure 4) [25,33].

Figure 4: SEM images (backscattered electron mode) of surface 
microstructure of BaZrO3 crucible with different doping. (a) the BaZrO3 
crucible [25]; (b) the CaO-doped BaZrO3 crucible [24]; (c) the Y2O3-doped 
BaZrO3 crucible [25]; (d), (e) and (f) are the BaZrO3-xCaZrO3 crucibles, mole 
ratio n (BaZrO3): n (CaZrO3)=(1− x): x (x=0.1, 0.2, and 0.3) in (d), (e) and (f), 
respectively [33].

Figure 5: SEM photographs of the interaction between the crucibles with 
the TiNi alloys melting at 1500 °C, hold for 5 minutes. (a) CaO crucible [34]; 
(b) CaZrO3 crucible [27]; (c) BaZrO3 crucible [25]; (d) Y2O3-doped BaZrO3 

Position
Elements/at.%

Possible Phase
Ba Ca Zr Y O

C 31.39 / 23.27 3.56 BaZr1-xYxO3

D 39.16 / 20.35 17.56 Ba2ZrYO6-d

E 29.82 2.21 30.96 / Ba1−xCaxZrO3−δ

F 24.09 2.84 26.92 / Ba1−xCaxZrO3−δ

G 24.29 4.77 28.27 / Ba1−xCaxZrO3−δ

H 1.78 27.89 28.4 / CaZrO3

Table 2: The EDS results of points A, B and C in (Figure 5(a)) [34].

Mole Fraction, x/%

Postion Ca Zr Ti Ni

A 88.68 6.9 3.09 1.33

B 25.85 12.72 38.93 22.51

C 0.21 0.35 39.58 59.85

Conclusion:
Finally, to obtain high-quality titanium and titanium alloys, it is necessary to 

explore more novel melting processes, break the barriers of materials, physics, chemistry, 
mathematics and other disciplines, and integrate the knowledge of multiple disciplines. 
In addition, the traditional preparation process is still worthy of in-depth study, such as 
obtaining better refractories. To evaluate the practicality of a crucible, we must consider 
its corrosion resistance, durability, cost, high temperature stability, thermal shock 
resistance, hydration resistance and wettability to the melt. BaZrO3 is a kind of refractory 
material with great potential, but it still needs a long way to go to the standard of 
industrial mass production, such as choosing one or more better doping materials and the 
corresponding ratio, explore more detailed erosion mechanisms, establish corresponding 
thermodynamic models, and optimize related multiphase diagrams.
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