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Introduction

Metals and interstitial alloys are materials that have many applications and are of interest to many researchers. Recently, 
there are studies on the nonlinear and elastic deformation of these materials by the Statistical Moment Method (SMM) [1-22]. 
SMM calculations [23] on the pressure and the interstitial atomic concentration dependences of melting temperature for tungsten 
(W) and tungsten silicide (WSi) are in rather good agreement with experiments [24,25], Molecular Dynamics (MD) calculations 
[26,27], dislocation calculations [28] and Calculations of Phase Diagram (CALPHAD) [29]. The melting temperature, the jumps 
of volume, enthalpy and entropy at the melting point and the Debye temperature for WSi under pressure are studied by SMM 
[30]. The melting temperature of defective transition metals up to 400 GPa also determined by SMM [31]. In studying nonlinear 
and elastic deformation of materials like metals and alloys,there still are many other theoretical methods such as Molecular 
Dynamics (MD) method for example in studying the temperature dependence of Young modulus for metals [32], Finite Element 
Method (FET) for example in simulating flow during deep drawing of carbon alloy steel [33], first principles calculation method 
(or ab initio method) for example in studying elastic moduli of Fe [34], Tight-Binding (TB) Hamiltonian method for example 
in studying elastic moduli and constants of HCP and BCC crystals [35], Functional Density Theory (DFT) for example in 
studying alloy FeC [36], Calculation of Phase Diagram (CALPHAD) method for example in studying calometric assessment of 
alloys CuSi and AlCuSi [37], Modified Embedded Atom Method (MEAM) for example in studying [38], etc. In this paper, we 
present formulas in our nonlinear and elastic deformation theory for numerical calculations and numerical results for the Young 
modulus, the maximum real stress and the elastic strain limit of W and WSi.
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Abstract

We present the theory of nonlinear and elastic defomation for BCC metal and binary interstitial alloy 
builded on the basis of a statistical moment method and our numerical calculations for W and WSi depending 
on temperature, pressure and interstitial atom concentrations. Our numerical calculations for Young modulus 
of W are compared with experiments and our other numerical calculations are new and predictic. 

In our model for BCC interstitial alloy AB with condition cB << cA ( X
X

Nc
N

=   (X = A, B) is the concentration of atoms X, 
NX is the number of atoms X, N=NA+NB is the total number of atoms of the alloy AB), the interstitial atom B stays at face center, 
the main metal atom A called as A1 stays at body center and the main metal atom A called as A2 stays at vertice of cubic unit cell 
[2,6-8,10,11,13,14,18,22]. In order to study nonlinear and elastic properties of BCC alloy AB by SMM, first we have to calculate 
the mean nearest neighbour distance between two atoms A in the alloy before deformation according to the following formula 
[2,39,40].
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Here, 1 1A Ar (P,T) a (P,T)≡  is the mean nearest neighbor distance between two atoms A in the alloy at pressure P and 

temperature T, 01 010 0A Ar (P, ) a (P, )≡  is the mean nearest neighbor distance between two atoms A in the alloy at pressure 

P and temperature T = 0K, y(P,T)  is the mean displacement of atom A in the alloy at pressure P and temperature T from 

equilibrium position, 01r (P, )  is the nearest neighbor distance between two atoms A in the pure metal A at pressure P and 

temperature T = 0K, 01 0)Ar (P,′  is the nearest neighbor distance between two atoms A in the zone containing the interstitial 

atom B at pressure P and temperature T = 0K, ( , )Xy P T is displacement of atom X(X = A, A1, A2, B) in the alloy at pressure 

P and temperature T from equilibrium position, 1Xr (P,T) is the nearest neighbour distance between two atoms A in the pure 

metal A or between atom X and other atom in the alloy at pressure P and temperature T, 01 0Xr (P, ) is the nearest neighbor 
distance between two atoms A in the pure metal A or between atom X and other atom in the alloy at pressure P and temperature 
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rv = is the volume of cubic unit cell per atom X at pressure P and temperature 

T = 0K, 0 ( ,0) /X X Xù k P m= is the vibrational frequency of the atom X at pressure P and temperature T = 0K, 

1 2
,X
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= = + + BN+ is the total number of atoms in the alloy, Bo Bo,k T kθ =  is the Boltzmann constant, 

/ (2 ),h hπ=  is the Planck constant, ( , ) ( , ) /X X XP T k P T mω =  is the vibrational frequency of the atom X at pressure 

P and temperature T, Xm  is the mass of the atom X, 0 ,Xu Xk , 1 ,Xγ 2 Xγ and Xγ are the cohesive energy and the crystal 

parameters ( Xk  is the harmonic crystal parameter, 1 ,Xγ 2 Xγ  and Xγ  are the anharmonic crystal parameters) of an atom X in 
the metal A or alloy AB [39,40] 
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Where ( , , )iu x y z=β β  is the displacement of the ith particle from the equilibrium position in the direction ,β  0iϕ  is 
the interaction potential between 0th particle and the ith particle and (…)eq is the value of (…) at the equilibrium position. 

The values of 0 ,Xu Xk , 1 ,Xγ 2 Xγ  and Xγ are calculated in terms of the number of atoms and the coordinates of atoms on 
coordination spheres [18,39,40]. In Eq. (3). ni is the number of atoms on the ith coordination sphere. The radii of the first 
coordination sphere is the nearest neighbor distance between two atoms. Then, the nearest neighbor distance and the mean 
nearest neighbor distance between two atoms within the framework of SMM take into account the anharmonicity of lattice 
vibrations. Assume ε is the strain of the alloy AB. The mean nearest neighbor distances between two atoms A in the alloy after 
deformation at pressure P and temperature T = 0K and at pressure P and temperature T respectively are determined by [7,18,42,43]

( ) ( )( )01 01,0 ,0 1 ,F
X Xa P a P ε= +

( ) ( ) ( )( )1 1 01, , . ,0 2 .F
X X Xa P T a P T a Pε ε= + +

(4)

The Helmholtz free energies of the alloy AB before and after deformation have the form [7,18,39-43]
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Where 1 7 ,A Bc c= −
1

2 ,A Bc c=
2

4A Bc c= , Xψ  and F
Xψ  are the Helmholtz free energies of the atom X alloy AB before 

and after deformation, AB
cS  and ABF

cS  are the configurational entropies of the alloy AB before and after deformation and are 
considered equal. The Young modulus of the alloy AB is given by [18,40]
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Here, YAE is the Young modulus of the pure metal A. In the nonlinear deformation of the alloy AB, the relationship between 
the stress and the strain is described as exponential [7,18,42,43]

0 ,
1
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AB AB

αεσ σ
ε

=
+ (7)

where 0 ABσ and ABα are constants.

The strain energy density of the alloy AB is defined by [7,18,42,43]
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 When the strain velocity is constant,

( ) ,AB AB ABf Cε σ ε= (9)

where CAB is a proportional factor [7,18,42,43]. Assume the maximum value maxABf corresponds to the strain .Fε Therefore, 

max max( ) .AB F AB AB AB Ff f Cε σ ε= = (10)

The maximum values of the stress axABmσ  and the real stress 1 axABmσ  are [7,18,42,43]
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The factor CAB is determined from experimental data of stress 0.2ABσ in the alloy AB in the form [7,18,42,43]
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σ ε

= ⋅ (12)

After having the value of the strain Fε , we can calculate the constants 0 ABσ  and .ABα From that we can determine the 
expression describing the stress-strain relationship in nonlinear deformation of alloy AB. The elastic strain limit of the alloy AB 
has the form [7,18,42,43]
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When the interstitial atom concentration B is zero, the characteristic nonlinear elastic deformation quantities of the alloy AB 
become that of the pure metal A. We use the Mie-Lennard-Jones potential for W and WSi with potential parameters given in 
Table 1 [44-46]

0 0( ) .
n mr rDr m n

n m r r
ϕ

    = −    −      
(14)

Interaction m n D(10-16erg) r0(10-10m) ν ρ(g/cm3)

W-W [46] 4.06 8.58 25608.93 2.7365 0.28 19.257

Si-Si [45] 6 12 45128.34 2.295 0.28 2.329

Table 1: Potential parameters [45,46], experimental Poisson ratio and density [44,47] for W and Si.

Figures 1-4 describe the silicon concentration, pressure and temperature dependences of mean nearest neighbor distance a and 
volume V for W and WSi at P = 0 and at T = 300K calculated by SMM and other calculations [48]. The agreement between the 
SMM calculation and the other calculation [48] is very good especially in the low pressure region.

Figure 1: a(T,cSi ) for W and WSi at P = 0 calculated by SMM. Figure 2: a(P,cSi) for W and WSi at T = 300K calculated by SMM.

Figure 3: V(T,cSi) for W and WSi at P = 0 calculated by SMM.
Figure 4: V(P,cSi) for W and WSi at T = 300K calculated by SMM and from 
CAL[48].
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Figures 5 & 6 show the silicon concentration, pressure and temperature dependences of Young modulus EY for W and WSi at P = 0 
and at T = 300K calculated by SMM. The temperature dependences of EY for W at P = 0 calculated by SMM are in good agreement 
with experiments in the temperature range below 1000K [49]. The pressure dependences of EY for W at T = 300K calculated by 
SMM are in good agreement with experiments [52,54,55]. Values of EY for W at T = 300K, P = 0 calculated by SMM very well agree 
with experiments [50-52, 55-57] (Table 2). 

Method E(GPa)

SMM 414.0

EXPT [50,52] 415.0

EXPT [55] 377.4

EXPT [56,57] 440.2

EXPT [51] 421.5

Table 2: Young modulus EY of W at T = 300K, P = 0 calculated by SMM and from EXPT [47-49,50-52].

For W and WSi at the same P and cSi when T increases, a increases and EY decreases. For W and WSi at the same T and cSi when 
P increases, a decreases and EY increases. For W and WSi at the same T and P when cSi increases, a increases and EY decreases.

Figure 5: EY (T,cSi) for W and WSi at P = 0 calculated by SMM and from 
EXPT [49].

Figure 6: EY (P,cSi) for W and WSi at T = 300K calculated by SMM and from 
EXPT [51,53,54].

At P = 0, we choose the experimentai stress values 0,2%σ  for W and WSi at each temperature from experiments [58] 

according to the formula 0,2% 0,2%. .Eσ ε=  The graph of ( )f ε  always exists ε  = Fε  such that f= fmax Namely when cSi = 0, 

Fε = 8.3% corresponding to maxf =16.79 GPa. When cSi = 1%, Fε = 8.1% corresponding to maxf = 35.57 GPa. When cSi = 

3%, Fε = 8.0% corresponding to maxf = 33.65 GPa. From that, we calculate the values of the maximum real stress 1maxσ  

and the elastic strain limit eσ  corresponding to the strain eε  for W and WSi at T = 300K, P = 0 and different silicon 

concentrations as shown in Tables 3 & 4. Then, graphs of Si( , )f cε  and 1 Si( , )cσ ε  for W and WSi are depicted in Figure 7.



Page 8/15

Copyright  Nguyen Quang Hoc

Citation: Hoc NQ, Hien ND and Hoa NT (2022) Young Modulus, Maximum Real Stress and Elastic Deformation Limit of W and WSi from Statistical Moment 
Method. J Miner Sci Materials 3: 1044

Sic = 0 Sic =1% Sic =3%

 
  
(%)
ε ( )

(GPa)
f ε   1 ( )

(MPa)
σ ε   

(%)
ε

 ( )
(GPa)
f ε  1 ( )

(MPa)
σ ε   

  
(%)
ε ( )

(GPa)
f ε  1 ( )

(MPa)
σ ε  

0.01 0.02 439 0.01 0.02 431 0.01 0.02 394

0.14 0.32 537 0.16 0.35 530 0.2 0.41 491

0.5 1.43 589 0.5 1.36 575 0.5 1.23 524

1.0 3.58 618 1.0 3.41 603 1.0 3,08 548

1.5 6.24 635 1.5 5.95 619 1.5 5,39 562

2,0 9.27 646 2.0 8.84 629 2.0 8,02 572

2.5 12.52 654 2.5 11.94 636 2.5 10,84 578

3.0 15.87 660 3.0 15.14 642 3.0 13,75 583

3.5 19.23 664 3.5 18.35 646 3.5 16,68 587

4.0 22.52 668 4.0 21.49 650 4.0 19,53 590

4.5 25.67 671 4.5 24.49 652 4.5 22,26 592

5.0 28.61 673 5.0 27.3 654 5.0 24,81 594

5.5 31.31 675 5.5 29.87 656 5.5 27.14 596

6.0 33.71 676 6.0 32.16 657,21 6,0 29.2 597

6.5 35.79 677 6.5 34.13 658,06 6.5 30.96 597

7.0 37,50 678 7.0 35.74 658,63 7.0 32.36 598

7.5 38.8 678 7.5 36.91 658,97 7.8 33.62 598

8.0 39.57 678 8.0 37.53 659,10 8.0 33.65 598

8.1 39.65 678 8.1 37.57 659,10 8.1 33.6 598

8.2 39.69 678 8.2 37.56 659,10 8.2 33.49 598

8.3 39.7 678 8.3 37.5 659,09 8.3 33.31 598

8.4 39.66 678 8.4 37.38 659 8.4 33.03 598

8.45 39.62 678 8.45 37.29 659 8.45 32.85 598

Table 3: Strain energy density Si( , )f cε  and real stress 1 Si( , )cσ ε  for W and WSi at T = 300K and P = 0
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Si (%)c  1maxσ  (MPa)  Fε  (%) eσ  (MPa) eε  (%)

0 678 8.3 538 0.14
1 659 8.1 531 0.16
3 598 8.0 490 0.20

Table 4: Si( )F cε corresponding to max Si( ),f c 1max Si( )cσ  and Si( )e cσ  corresponding to Si( )e cε  for W and WSi at T = 300K 
and P= 0

Figure 7: (a) Si( , )f cε  and (b) 1 Si( , )cσ ε  for W and WSi at T = 300K and P = 0

The values of ( )f ε  and 1( )σ ε  for WSi at P = 0, cSi = 3% and different temperatures are summarised in Table 5. When T = 

1000K, Fε = 5.8% corresponds to maxf = 24.36 GPa. When T = 1500K, Fε  = 4.9% corresponds to maxf = 19.85 GPa. When T 

= 2000K, Fε = 4.1% corresponds to maxf = 16.37 GPa. From that, we calculate the values of Fε , 1maxσ , eσ  and eε  for WSi at 

Sic  = 3%, P = 0 and different temperatures as shown in Table 6. Then, graphs of ( , )f Tε  and 1 ( , )Tσ ε  for WSi are depicted 
in Figure 8.

Table 5: Strain energy density ( , )f Tε  and real stress 1 ( , )Tσ ε  for W and WSi at cSi = 3% and P= 0

T = 1000K T = 1500K T = 2000K

  
(%)
ε

 ( )
(GPa)
f ε  1 ( )

(MPa)
σ ε  

  
(%)
ε

 ( )
(GPa)
f ε  1 ( )

(MPa)
σ ε  

  
(%)
ε

 ( )
(GPa)
f ε  1 ( )

(MPa)
σ ε  

0.01 0.02 455 0.01 0.02 466 0.01 0.02 484

0.25 0.55 542 0.29 0.69 544 0.36 0.93 555

0.5 1.28 561 0.5 1.32 556 0.5 1.38 562
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1.0 3.13 580 1.0 3.19 572 1.0 3.27 574

1.5 5.39 590 1.5 5.43 580 1.5 5.51 581

2.0 7.92 597 2.0 7.91 585 2.0 7.94 584

2.5 10.59 601 2.5 10.48 588 2.5 10.42 587

3.0 13.3 604 3.0 13.03 590 3.0 12.83 588

3.5 15.94 606 3.5 15.46 592 3.5 14.97 589

4.0 18.43 608 3.7 16.37 592 3.6 15.34 589

4.5 20.69 609 4.0 1762 593 37 15,67 589,05

5.0 22.6 609 4.2 18,38 592,91 3,8 15.96 589

5.5 23.98 610 4.4 19.03 593 3.9 16.19 589

5.7 24.29 610 4.6 19.54 593 4.0 16.33 589

5.8 24.36 610 4.8 19.83 593 4.1 16.37 589

6.0 24.25 610 4.9 19.85 593 4.2 16.23 589

6.1 24.00 610 5.0 19.73 593 4.3 15.82 589

6.2 23.53 610 5.1 19.4 593 4.4 14.97 589

6.3 22.72 610 5.2 18.75 593 4.5 13.26 589

6.4 21.28 610 5.3 17.53 593 4.6 9.69 589
6.5 18.54 610 5.4 15.19 593 4.7 0.85 589

Figure 8: (a) ( , )f Tε  and (b) 1 ( , )Tσ ε  for WSi at cSi = 3% and P = 0
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T(K)
1maxσ  (MPa) Fε  (%) eσ  (MPa) eε  (%)

1000 610 5.8 542 0.25
1500 593 4.9 544 0.29
2000 589 4.1 555 0.36

Table 6: Si( )F cε corresponding to max ( ),f T  1max ( )Tσ  and ( )e Tσ  corresponding to ( )e Tε  for WSi at Sic = 3%, 
P= 0 and different temperatures.

The values of ( )f ε  and 1( )σ ε  for WSi at P= 20GPa, T = 300K and different silicon concentrations are summarised in Table 

7. When Sic = 0, Fε = 8.9% corresponds to maxf = 44.73 GPa. When Sic = 1%, Fε = 8.5% corresponds to maxf = 41.48 GPa. 

When Fε = 3%, Fε = 8.1% corresponds to maxf = 31.12 GPa. From that, we calculate the values of Fε , 1maxσ , eσ  and eε  for 

W and WSi at P= 20GPa, T = 300K and different temperatures as shown in Table 8. Then, graphs of Si( , )f cε  and 1 Si( , )cσ ε  
for W and WSi are depicted in Figure 9.

Sic = 0 Sic =1% Sic =3%

 
  
(%)
ε ( )

(GPa)
f ε

  1 ( )
(MPa)
σ ε   

(%)
ε

 ( )
(GPa)
f ε

 1 ( )
(MPa)
σ ε

 
  
(%)
ε

  ( )
(GPa)
f ε 1 ( )

(MPa)
σ ε

 

0.01 0.01 443 0,01 0.01 442 0.01 0.003 415

0.12 0.15 542 0,13 0.13 540 0.15 0.1 507

0.5 1.01 607 0,5 0.89 597 0.5 0.67 553

1.0 2.93 639 1,0 2.68 628 1.0 2.2 580

1.5 5.54 658 1,5 5.14 645 1.5 4.38 595

2.0 8.64 670 2,0 8.09 656 2.0 7.02 605

2.5 12.07 679 2,5 11.35 664 2.5 9.99 612

3.0 15.68 686 3,0 14.81 671 3.0 13.13 617

4.0 23.02 695 4,0 21.82 679 4.0 19.54 625

5.0 29.9 701 5,0 28.41 685 5.0 25.54 629

5.5 33.02 704 5,5 31.37 687 5.5 28.23 631

6.0 35.85 705 6,0 34.05 6885 6.0 30.62 632

6.5 38.35 706 6.5 36.41 689 6.5 32.68 633

7.0 40.5 707 7 38.39 690 7.0 34.35 633

7.5 42.27 708 7,5 39.95 690 7.5 35.53 633

Table 7: Strain energy density Si( , )f cε  and real stress 1 Si( , )cσ ε  for W and WSi at T = 300K and P = 20 GPa.
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8.0 43.6 709 8 41.03 691 7.7 35.84 634

8.5 44.46 709 8.4 41.45 691 8.0 36.1 634

8.6 44.56 709 8.5 41.48 691 8.1 36.12 634

8.7 44.65 709 8.6 41.47 691 8.2 36.1 634

8.8 44.7 709 8.7 41.42 691 8.3 36.04 634

8.9 44.73 709 8.9 41.18 691 8.5 35.77 634

9.1 44.69 709 9.1 40.67 691 8.7 35.25 634

9.5 44.06 709 9.5 38.11 691 9.0 33.75 633

9.7 43.25 709 9.7 34.76 691 9.5 26.67 633

10 3971 708 10 11.31 690 9.7 18.41 633

Si (%)c  1maxσ  (MPa)  eσ  (%) eσ  (MPa) eε  (%)

0 709 8.9 542 0.12
1 691 8.5 540 0.13
3 634 8.1 507 0.15

Table 8: Si( )F cε corresponding to max Si( ),f c  1max Si( )cσ  and Si( )e cσ  corresponding to Si( )e cε  for W and WSi at T = 
300K and P = 20 GPa.

Figure 9: a) Si( , )f cε  and (b) 1 Si( , )cσ ε  for W and WSi at T = 300K and P = 20GPa.

According to the above SMM calculationds for WSi at the same pressure P and temperature T when the silicon concentration cSi 

increases, the maximum real stress 1 axmσ  and the elastic strain limit eσ  decrease. Namele for WSi at P = 0, T = 300K when cSi 

increases from 0 to 3%, the strain energy density decreases and therefore, 1 axmσ  decreases from 678.43 to 598.26 MPa and eσ  

decreases from 537.86 to 490.39 MPa. For W and WSi at the same P and cSi when T increases, 1 axmσ  decreases and eσ  increases. 



Page 13/15

Copyright  Nguyen Quang Hoc

Citation: Hoc NQ, Hien ND and Hoa NT (2022) Young Modulus, Maximum Real Stress and Elastic Deformation Limit of W and WSi from Statistical Moment 
Method. J Miner Sci Materials 3: 1044

For example for WSi at P = 0, cSi = 3% when T increases from 1000 to 2000K, 1 axmσ decreases from 609.8 to 589.16 MPa and eσ  
increases from 541.6 to 555.49 MPa. This is in in good agreement with calculation law for metals [42] and substitutional alloys 

[43]. For W and WSi at the same T and cSi when P increases, 1 axmσ  and eσ  increase. For example for WSi at T = 300K, cSi = 3% 

when P increases from 0 to 20 GPa,  increases from 598.26 to 633.66 MPa and eσ  increases from 490.39 to 507.21 MPa. 
This also is in in good agreement with calculation law for metals [42] and substitutional alloys [43]. 

Conclusion

The paper presents theoretical results and numerical calculations for nonlinear and elastic deformation quantities of W and 
WSi in the range from 200 to 3600K, from 0 to 100 GPa and from 0 to 5% of silicon concentration .using the Mie-Lennard-Jones 
potential and the coordination sphere method. The calculated results for the Young modulus of W are in good agreement with 
the experimental data and other calculations. The calculated results for WSi are predictive, orienting experimental results in the 
future.
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