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Introduction

Ceramic coatings were first used in the late 1940s [1-3].These coatings have been applied to the nozzles of X-15 rockets 
and to the components of the combustion chamber of gas turbines in the 1960s [1]. The main role of these coatings is to 
reduce the surface temperature of the coated components. These coatings, designed Thermal Barrier Coatings (TBCs), have 
been used successfully since 1970s to extend the gas turbine components lifetime [4,5]. Since the publication of the first 
papers on TBCs applied to gas turbine blades in 1976 [6], the development of these coatings for hot sections of engines has 
become the focus of the scientists in the field of materials science [6,7]. 

Mini Review

The first ceramic materials applied to successful thermal barrier coatings are alumina (Al2O3) and zirconia-calcia 
(ZrO2+CaO), these ceramics were deposited on Nichrome bond coat [8]. Nevertheless, these materials have shown their 
limits for more advanced applications of TBCs. In the case of alumina, his thermal conductivity is a relatively high [9] and 
forms also nonequilibrium phases called gama, eta, and delta phases, which transform at high temperature to the stable 
phase alpha [10]. This transformation induces shrinkage and associated cracking which would have a detrimental effect on 
coating life. In the case of zirconia-calcia and zirconia-magnesia. The problem is related to destabilization from the cubic 
(F-ZrO2) phase to the monoclinic (M-ZrO2) phase. Pure zirconia has three crystallographic forms: monoclinic from low 
temperatures up to around 1170 °C, quadratic between 1170 °C and 2300 °C and finally cubic up to the melting point around 
2710 °C. After cooling to around 950 °C, the transformation of the quadratic phase into the monoclinic phase is accompanied 
by a volume expansion. This elongation initiates residual stresses and the appearance of cracks within the ceramic during 
thermal cycling, which therefore makes it impossible to use pure zirconia alone for thermal barrier application. That is why; 
many dopants (oxides), such as CaO, MgO, CeO2, or Y2O3 were added to zirconia in order to totally or partially stabilize 
cubic or quadratic structures at low temperatures [8]. Yttrium is best suited to thermal barrier application since Yttria 
Zirconia (YSZ) has low thermal conductivity and mechanical properties superior to those of zirconia stabilized with the 
other dopants [11-13]. To give the thermal barrier good mechanical properties and thermal stability the Yttria level should 
be between 6 and 8% [14]. The thermal conductivity of bulk yttria partially stabilised zirconia YSZ and YSZ coatings were 
reported to be 0.7-1.4 W/mK (7.25wt.% YSZ) [15,16]. The YSZ has a high CTE (11x10-6 K-1) [11], which is close to that of the 
coated superalloy substrate (14x10-6 K-1) [12], it helps to reduce induced stresses from the thermal expansion mismatch. 
Neverthless, a mismatch still remains inducing crack propagation within the coatings despite its high toughness. Therefore, 
more demanding performances are required to this technology, and there will be a continuing need to develop more durable 
TBCs. A numerous works on various aspects are found in the literature [12,13,16-23]. 

The intensive research for new TBC materials results in several groups of different ceramic [16]: (1) zirconia doped 
with different Rare-Earth (RE) cations (defect cluster TBC’s), (2) perovskites, (3) hexa-aluminates, and (4) pyrochlores have 
been suggested as promising new top coat materials (see Table 1 for the chemical compositions and main advantage of these 
materials).
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Thermal Barrier Coating (TBC) is a thermal insulation, which enables the coated substrate material to work above its 
melting temperature. The TBCs have been used to enhance the performance of the gas turbine for aeronautic and energy 
applications. Yttria stabilized zirconia YSZ (ZrO2+7-8 wt.% Y2O3) is a topcoat ceramic which is applied for more than 40 
years to gas turbine components. YSZ has a high toughness and a good temperature capability up to about 1200 °C, higher 
operating temperatures is required for enhanced efficiency of gas turbine. Alternative materials for TBC application were 
developed during the last years allowing a higher temperature capability and lower thermal conductivity combined to higher 
toughness and thermochemical stability a of the TBCs. 
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Table 1: Composition and main advantages of alternative material groups for TBCs 
applications [16].

Material Group Composition Main advantages 

Defect Cluster 

TBCs

Zirconia is doped with oxides of 

different rare-earth (RE) cations: 

ZrO2-Y2O3-Gd2O3-Yb2O3

Lower thermal 

conductivity 

compared about 1.7 

W/mK [24]

Perovskites

Zirconates 

AZrO3 (A=Sr, Ba, Ca)/SrZrO3 

Complex forms 

ABO3 (A=Ba, La, B=(paired Mg,Ta, 

Al, La)/Ba(Mg1/3Ta2/3)O3

High melting point: 

SrZrO3; 2650 °C, 

Ba(Mg1/3Ta2/3)O3; 

3100 °C [25].

Hexaaluminates

(La, Nd)MAl11O19 (M = 

Mg, Mn to Zn, Cr or Sm)/

LaMgAl11O19/ LaTi2Al9O19 

ABxAl12-xO19

Low young’s 

modulus, high 

sintering resistance, 

structural and 

thermochemical 

stability up to 1400 °C 

[26,27].

Pyrochlores 

A2B2O7 

A and B are 3 + or 2 + and 4 + or 5 + 

cations/La2Zr2O7

Good combination 

low thermal 

conductivity and 

high temperature 

phase stability and 

pronounced CMAS 

resistance [28]

Summary

The present paper presents a short review on the early TBCs applications and 
their development during the last decades. The properties of Yttria Stabilized Zirconia 
(YSZ) as well as their advantages were shortly reported. It has been shown in the 
TBC literature of the last years the potential of Hexa-aluminates and pyrochlores in 
increasing the TBC performance, these groups of ceramic applied to TBC exhibit a 
high sintering resistance, thermochemical stability up to 1400 °C and a significant 
CMAS resistance.
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