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Introduction

Joint replacement surgery has significantly advanced orthopedics, providing a solution for patients suffering from 
chronic joint pain and dysfunction. 3D printing and regenerative medicine are two areas of orthopedics with potential 
benefits since new treatments and methods are constantly being introduced to improve patient care, such as nanomaterials 
used as bone substituents have been developed. 3D printing is used to customize and revolutionize patient’s specific 
bone implants, surgical tools, and body screws. One of the most exciting aspects is the capability to 3D print different 
nanomaterials or polymers of complex geometry in a short period and low manufacturing costs [2], which makes scientists 
start exploring different materials to upgrade the durability and properties of implants to fulfill the needs.

Halloysite Nanotubes (HNT)

HNTs are a type of clay nanotubes that are abundantly and naturally available as clay particles at a cheap price [3]. It 
comprises an aluminosilicate multilayer [4]. HNTs have a negatively charged external layer of about 50-80nm diameter and a 
positively charged inner layer of about 10-15nm diameter with 1µm length, making them cation and anion absorbents. They 
are majorly hollow tubular shapes with a pore size of 0.353 cm3/g, attracting interest for their drug delivery applications as 
drug carriers increasing their use as antibacterial agents [5]. They are considered nontoxic and biocompatible, and their high 
mechanical properties and easy functionalization enable their use in scientific research [6]. Due to their weak intermolecular 
forces, the external layer can undergo modification by improving with polymers, biopolymers, or other materials capable of 
reinforcing their properties, resulting in improved dispersibility and thermal stability [3] used in biomedical and industrial 
applications [7].

Drug Delivery Application

HNTs can be loaded with growth factors and drugs, and can be released in a controlled and sustained manner. Cancer 
therapy is one of the applications that helps to reduce any side effects by increasing life efficacy. A recent study shows clay 
nanotubes loaded with Potassium Iodide and sustained released over a period for the treatment of Anaplastic Thyroid 
Cancer (ATC); potassium iodide helps in the homoaggregation of the nanotubes while the nanotubes act as the nanocarrier 
for transporting [8]. Similarly, the HNTs lumen was loaded with deferiprone while growing ceria nanozyme on the external 
layer to relieve iron stress and for radiation colitis therapy [9].

Some researchers prepared a hydrogel scaffold utilizing HNT, chitosan, and graphitic-carbon nitride to lower the side 
effects of anticancer agents by loading Quercetin (QC) into the lumen of the HNT and controlled release against MCF-7 cells 
(breast cancer cells) and the resulting outcome shows an improved cytotoxicity pH-sensitive drug delivery system [10]. Also, 
Curcumin was loaded into HNT to develop wound dressing with hyaluronic acid and polyamide 6, which produces increased 
antibacterial properties against pathogens. When tested in vivo, the outcome shows a reduced wound size, signifying the 
delivery capability properties [11].

Antimicrobial Agent Application

A pH-sensitive scaffold made up of clay nanotubes such as HNT can effectively inhibit the growth of microorganisms; 
they contain inherent antimicrobial properties in addition to the capability of loading additional antimicrobial agents into 
the lumen, which will enhance the antimicrobial properties; they also possess high surface area, excellent surface chemistry, 
biocompatibility and mechanical properties, which can be used in reinforcing different polymers [12]; Ciprofloxacin was also 
shown to be loaded into the HNT and sustain release over a period at different pHs [13].

Tissue Regeneration Application

Due to the weak mechanical hardness and osteoinductive capability of Hydroxyapatite (HAP) in designing 
nanocomposite scaffolds for tissue regeneration, HNT has been reported to improve these limitations by reinforcing HAP by 
improving the scaffold microstructure and porosity [14]. Engineered scaffolds provide better results than biological grafts for 
tissue reconstruction due to their excellent properties, but they are poor in tissue healing properties; therefore, researchers 
loaded exendin-4 (growth factor – EX-4) in the lumen of the HNT) to attain the desired bioactivity and to protect and avoid 
burst release resulting in improving tendon healing [15].
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Abstract

Recently, several difficulties have been faced in the biomedical field, which prompted scientists to explore a wide 
variety of nanomaterials that can be used to solve issues using tissue regeneration strategies. For decades, Titanium, steel, 
and metals have been explored for the fabrication of medical implants due to their excellent properties such as hardness, 
strength, and biocompatibility, but these materials have limitations. Several reports have documented the increase in the 
human body rejecting Titanium, resulting in revision surgery [1]. Therefore, there is a need to develop materials that can 
be highly biocompatible, nontoxic, and biodegradable, leading to the development and use of nanomaterials. Additional 
Halloysite Clay Nanotubes (HNTs) have shown several properties that meet and exceed those needed to replace Titanium, 
steel, and Metals. This paper reviews the advances and prospects of the biomedical application of HNTs.
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Similarly, Nanoclay enhanced the properties of a self-healing nanocomposite 
hydrogel, such as the mechanical properties, biocompatibility, and porosity intended 
for cartilage tissue defect treatment [16]. Nano clay was incorporated in a scaffold 
composed of chitosan-polyethylene oxide to improve the regeneration of bone tissue 
mainly because of their morphological and mechanical properties [17].

Medical Coatings Application

Several scientists have reported that HNT can be used as nanofillers for different 
nanocomposite scaffolds to enhance their protective coatings, mechanical and 
antimicrobial properties. One example documented was the coating of the HNT 
lumen with dopamine derivatives covalently modified and characterized to prevent 
microbial biofilm formation, resulting in a material that can coat medical implants 
[18]. HNT has been documented to be used in enhancing the fire
safety of polyester-cotton fabrics by initially loading HNT with silver nanoparticle 
(AgNP) before coating with nitrogen, phosphorus, and silicon, which results in a self-
extinguish composite coating, providing excellent fire safety [19].
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