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Introduction
 

In recent years, the new composite metal matrices have become significantly important in emerging technologies because 
of their improved performance in handling various loads and environmental effects. The unwavering quest for lightweight 
and high-strength materials fuels ongoing innovation in several engineering disciplines, especially in challenging sectors 
such as aerospace and automotive [1-4]. Aluminum alloys, particularly AA6061, are notable among possible alternatives 
because to their exceptional combination of low density, high strength, and formability [5,6]. Nevertheless, their intrinsic 
limitations, such as limited resistance to wear and mechanical characteristics, limit their application in situations involving 
high wear and load-bearing levels [7,8]. To address these restrictions, adding ceramic reinforcements has emerged as a 
revolutionary approach [9-11]. Ceramic particles provide a synergistic method for improving the tribological and mechanical 
properties of AA6061 due to its excellent hardness, high melting temperatures, and improved wear resistance [12]. Tungsten 
Carbide (WC), Tantalum Carbide (TaC), Niobium Carbide (NbC), Vanadium (VC), Silicon Carbide (SiC), Aluminum Oxide 
(Al2O3), Boron Carbide (B4C), Titanium Carbide (TiC), and Zirconium Carbide (ZrC) are notable options due to their 
strong compatibility with AA6061 [13-23]. These particles are used in metal matrices as either mono-composite or hybrid-
composite materials. Studies have shown that incorporating Hexagonal Boron Nitride (HBN) nanoparticles into aluminum 
alloys enhances their mechanical characteristics, lubrication behavior, and wear resistance [24-26]. Friction Stir Processing 
(FSP) offers a distinctive and effective method for integrating ceramic reinforcements into AA6061 [27]. Frictional heat 
produced during Friction Stir Processing (FSP) causes the matrix material to become softer, facilitating the thorough mixing 
and scattering of ceramic particles, thereby maximizing their combined impact [28].

Consequently, including ceramic reinforcements enhances the mechanical characteristics of the AA6061 matrix, 
resulting in increased tensile strength, hardness, and fatigue resistance [29]. Friction Stir Processing (FSP) causes the 
microstructure of the aluminum matrix to become more refined, resulting in smaller grain sizes. This refinement of the 
microstructure leads to improved mechanical characteristics of the material. Nevertheless, this strategy prioritizes one 
aspect while disregarding the enhancement of other attributes. The key development is a hybrid Chrome Carbide (CrC) 
reinforced with tantalum and niobium carbides. TaC has excellent hardness and wear resistance, NbC has high-temperature 
strength and oxidation resistance, and CrC is a strong matrix material. FSP’s low processing temperature and effective 
particle dispersion increase the composite’s microstructure and interfacial bonding, resulting in excellent performance.

Materials and Setup 

AA6061 aluminum alloy sheets were the basic matrix. AA6061 was the matrix, and CrC, TaC, and NbC were the 
reinforcements for the basis mono-composites. CrC is the fundamental reinforcement in the hybrid method, deliberately 
mixed with TaC or NbC at 50% volume fractions. According to manufacturers’ suppliers, the typical particle size of CrC, 
NbC, and TaC is 1.4 to 2.6 µm. The FSP approach incorporated hybrid reinforcement particles into the aluminum matrix. 
Figure 1 depicts the experimental techniques prior to FSP. The triangular pin is utilized to machine the liner hole patterns on 
the AA6061 aluminum sheet. Ensuring consistency was achieved by blending the mono and hybrid reinforcement particles 
before inserting them into the pre-milled holes. It guaranteed consistent allocation and enhanced reinforcement. Figure 2 
depicts using an automatic milling machine for fine parameter control in FSP. The specifications include a tool rotation speed 
of 1120 rpm, a 60 mm/minute movement speed, and a tilt angle 3°.
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Abstract

This study investigates the effect of incorporating ceramic particles, specifically Chromium Carbide (CrC), Tantalum 
Carbide (TaC), and Niobium Carbide (NbC), on the mechanical properties of AA6061 aluminum alloy. The investigation 
uses the Friction Stir Processing (FSP) fabrication technique. The results indicate substantial enhancements in mechanical 
properties compared to the material without reinforcement. Reinforced composites display elevated longitudinal and 
shear velocities, which signifies enhanced rigidity and ability to withstand deformation when subjected to different force 
directions. Using CrC and TaC reinforcements in the AA6061/CrC+TaC composite led to the maximum velocities for both 
wave types, indicating a notably rigid composite material. Introducing ceramic particles to AA6061 significantly augments 
Young’s and shear modulus, indicating improved strength and stiffness. AA6061/CrC+TaC showed the most notable 
enhancement of all the reinforcements, underscoring the potential of using combined reinforcements. Incorporating ceramic 
particles into AA6061 greatly enhances its microhardness and Vickers hardness. The addition of Tantalum Carbide (TaC) 
as a reinforcement resulted in the most significant enhancement, indicating a robust interaction with the matrix. Notably, 
composites with a combination of reinforcements (CrC+TaC and CrC+NbC) displayed even greater hardness, possibly due 
to synergistic effects.
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Results and Discussion

Microstructure observation 

Most metal matrix composites refine their grain by reducing the average grain size 
of the matrix metal after solidification using FSP [30,31]. In this study, metal matrix 
nanocomposites based on transition metal carbides were investigated. Transition 
metal carbides refine the microstructure. Transition metal carbides reduced the grain 
size by more than 50% compared to the matrix without reinforcement. This indicates 
that controlling the microstructure leads to nanocomposite materials with tiny 
grains. In microsystems technology, grain size influences mechanical and physical 
properties. Finer grains improve toughness, ductility, wear resistance, and hardness. 
Nanocomposite research is looking for tiny grains. It compares the matrix with 
dispersed sub-particles to determine how these materials can create new properties. 
The study investigates how transition metal carbides influence grain size and fineness. 
Microstructural and grain size-related effects can be examined. The grain size data 
are compared and analyzed to find the best nanocomposite carbides. This enables 
material improvements. Figure 3 shows the microstructure of rolled AA6061 and 
composite material under an optical microscope. The images of the composite material 
are located in the center of the machining zone. Rolling the base material produced 
distorted grains aligned with the rolling direction. The base metal AA6061 has a 
height-to-thickness ratio 2.8 with an average grain size of 167.4 ± 8.5 µ. The agitated 
area was greatly increased by friction stir machining. Complete recrystallization 
was achieved using the PZ turning tool and the heat of the base metal. All composite 
materials have equiaxed grains. Uniform finishing methods should be used for similar 
base materials and situations. Many reinforcements affect the finishing of composites. 
During recrystallization, FSP reinforcements inhibit grain formation. Reinforcement 
limited composites. Simply reinforced composites had an average grain size of 14.7 ± 
3.8 µm for AA6061/CrC, 13.84 ± 3.4 for NbC and 12.45 ± 1.6 for the hybrid composites 
AA6061/CrC+TaC and AA6061/CrC+NbC have tiny grain sizes (11.6 ± 0.7 µm and 
12.3 ± 0.2 µm) due to the semi-solid thermomechanical deformation of the FSP.

Ultrasound analysis 

Longitudinal velocity: Longitudinal velocity refers to the speed at which sound 
waves travel through the material in a parallel direction to the application of force. 
Increase in velocity with ceramic reinforcement: All the AMC composites (AA6061/
Cr+TaC) have a higher longitudinal velocity than the unreinforced aluminum alloy 
(AA6061). This indicates that sound waves travel faster through the composite 
materials. Among the AMCs with single ceramic reinforcements (CrC, TaC, NbC), 
AA6061/TaC shows the highest longitudinal velocity (6274.28 m/s). This suggests that 
the presence of Tantalum Carbide (TaC) particles stiffens the material matrix more 
compared to Chromium Carbide (CrC) and Niobium Carbide (NbC). Hybrid ceramic 
reinforcement: Combining two ceramic reinforcements (CrC+TaC and CrC+NbC) 
resulted in even higher longitudinal velocities than single reinforcements, as shown in 
Figure 4. AA6061/CrC+TaC has the highest overall velocity (6485.28 m/s), indicating a 
stiffer material matrix due to the combined effect of chromium carbide and tantalum 
carbide reinforcements. The data suggest that the presence of ceramic reinforcements 
(CrC, TaC, NbC) increases the stiffness of the aluminum matrix, leading to higher 
longitudinal velocity of ultrasound waves. Furthermore, a combination of certain 
reinforcements (like CrC+TaC) can provide an even stiffer composite material.

\

Shear velocity: Shear velocity refers to the speed at which sound waves travel 
through the material in a direction perpendicular to the applied force. AA6061/
CrC+TaC (3193.32 m/s) has the highest shear velocity among all the samples. This 
indicates that sound waves travel fastest through this composite material when 
applying a shearing force. All AMC composites (AA6061/X) exhibit higher shear 
velocity than the unreinforced aluminum alloy (AA6061-3039.88 m/s). This signifies 
that ceramic reinforcements strengthen the material against shear forces. While all 
reinforced composites show higher velocity than the unreinforced material, the 
effect of reinforcement type is evident. Among samples with single reinforcements 
(CrC, TaC, NbC), AA6061/TaC (3108.2 m/s) has the greatest shear velocity, as shown 
in Figure 5. This suggests that TaC particles enhance the material’s resistance to 
shear deformation compared to CrC and NbC. Interestingly, both dual-reinforced 

Figure 1: AA6061 sheet preparation and hole creation.

Figure 2: Friction stir processing setup.

Figure 3: Optical microstructure images of the base alloy and friction stir 
processed samples.

Figure 4: Longitudinal velocity of ultrasound in different aluminum matrix 
composites (AMCs).
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composites (CrC+TaC and CrC+NbC) have even higher shear velocities than single 
reinforcements. This indicates a synergistic effect from the combined presence of two 
ceramic reinforcements. Ce’amic reinforcements (CrC, TaC, NbC) improve the shear 
strength of the aluminum matrix, leading to higher shear velocity of ultrasound waves. 
Moreover, combining certain reinforcements (like CrC+TaC) can further improve the 
material’s resistance to shear forces.

Mechanical properties 

Longitudinal and shear velocities obtained from ultrasound tests can be used to 
estimate certain mechanical properties of a material, but it’s not a direct one-to-one 
conversion. The key connection lies in the relationship between the velocities and the 
material’s elastic moduli. Elastic moduli, like Young’s modulus (stiffness) and shear 
modulus (resistance to shearing), govern how a material deforms under stress. The 
velocities of sound waves (longitudinal and shear) are related to the material’s density 
(ρ) and the relevant elastic modulus (E or G) through a specific equation. This equation 
can be rearranged to solve for the elastic modulus based on the measured velocity (v) 
and density.

( )2 22L SV Vλ ρ= −
   (1)

2
SVµ ρ=      (2)

The metal matrix composite specimens were analyzed to determine their 
longitudinal modulus, Young’s modulus, shear modulus, bulk modulus, and Poisson’s 
ratio. These properties, denoted as L, E, B, G, and v respectively, were calculated using 
the appropriate formula [32,33]:
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The Young’s modulus of all the reinforced composites, consisting of AA6061 
with ceramic particles, is higher than that of the unreinforced AA6061. This suggests 
that including ceramic particles enhances the strength and rigidity of the material. 
AA6061/CrC+TaC, a composite material reinforced using a combination of chromium 
carbide and tantalum carbide, exhibits the highest Young’s modulus (91.085 GPa) 
among all reinforced composites. This results in a significant increase in stiffness 
(34.7%) compared to the unreinforced material. The difference in stiffness between 
AA6061/CrC (78.44 GPa) and AA6061/NbC (78.54 GPa) is minimal, with the addition 
of Niobium carbide resulting in a slightly larger rise in stiffness as shown in Figure 6. 

Figure 5: Shear velocity of ultrasound in different aluminum matrix composites 
(AMCs).

Based on the data, it can be concluded that adding ceramic particles such as chromium 
carbide, tantalum carbide, or their mixtures to AA6061 can greatly enhance the 
material’s stiffness. The selection of a particular reinforcing particle can significantly 
impact the extent of improvement.

The longitudinal modulus quantifies the stiffness of various composite metal 
matrix materials in a direction parallel to their long axis. The longitudinal modulus 
of all reinforced composites (AA6061 with ceramic particles) is greater than that of 
the unreinforced AA6061, as shown in Figure 7. This demonstrates that including 
ceramic particles enhances the strength and rigidity of the material in the longitudinal 
direction. AA6061/CrC+TaC, a composite material reinforced with a combination 
of chromium carbide and tantalum carbide, exhibits the greatest longitudinal 
modulus among all reinforced composites, measuring at 140.18 GPa. This represents 
a significant gain in stiffness, with a 39.67% increase compared to the unreinforced 
material. Adding ceramic particles leads to an upward trend in the longitudinal 
modulus. Chromium Carbide (CrC) and Tantalum Carbide (TaC) provide substantial 
enhancements, with chromium carbide offering a 17.64% improvement and tantalum 
carbide offering a 29.47% improvement. Incorporating these particles (CrC+TaC and 
CrC+NbC) results in even greater enhancements (39.67% and 29.57%, respectively). 
In summary, the evidence validates that adding ceramic particles such as chromium 
carbide, tantalum carbide, or their mixtures effectively enhances the longitudinal 
stiffness of AA6061. The results also indicate that combining these ceramic particles 
can further enhance stiffness.

Figure 6: Effect of reinforcement on the Young’s Modulus in different aluminum 
matrix composites (AMCs).

Figure 7: Effect of reinforcement on the Longitudinal Modulus in different 
aluminum matrix composites (AMCs).
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Shear modulus is a measure of a material’s rigidity under shearing forces, 
which tends to cause layers of the material to slide relative to each other. Higher 
values indicate a material that resists deformation more under shearing forces. All 
the reinforced composites except AA6061/NbC have a higher shear modulus than 
the unreinforced AA6061. Adding most ceramic particles strengthens the material 
against these shearing forces, as shown in Figure 8. AA6061/CrC+TaC (combination 
of chromium carbide and tantalum carbide) has the highest shear modulus (33.99 
GPa), showing the most significant improvement (34.1%) in shear resistance compared 
to the unreinforced material. AA6061/NbC shows a slight increase (15.7%) in shear 
modulus compared to unreinforced AA6061. There is a trend of improvement in shear 
modulus with the addition of most ceramic particles, particularly chromium carbide 
and tantalum carbide (individually or combined). Possible reasons for the lower 
improvement in AA6061/include: The distribution of the niobium carbide particles 
within the composite might not be optimal for strengthening against shearing forces. 
The interfacial bonding between the niobium carbide particles and the aluminum 
matrix might be weaker than other reinforcements. The specific properties of niobium 
carbide particles might be less effective in improving shear resistance in this composite.

Microhardness behavior 

The microhardness of all composites reinforced with ceramic particles 
(Chromium Carbide (CrC), Tantalum Carbide (TaC), and Niobium Carbide 
(NbC)) significantly surpasses that of the unreinforced AA6061 baseline. This 
enhancement can be attributed to the presence of the ceramic particles. These 
particles act as crystallographic obstacles within the metal matrix, hindering the 
movement of dislocations – microscopic defects that allow plastic deformation to 
occur. Consequently, the material exhibits a greater resistance to localized plastic 
deformation, translating to increased hardness. Among the reinforcements employed, 
Tantalum Carbide (TaC) demonstrates the most exceptional improvement in both 
microhardness and Vickers hardness. This suggests a particularly strong interaction 
between TaC particles and the AA6061 matrix, leading to a more effective restriction 
of dislocation movement. Composites containing a combination of ceramic particles 
(AA6061/CrC+TaC and AA6061/CrC+NbC) exhibit even higher microhardness 
compared to those with single reinforcements. This phenomenon might be due to 
synergistic effects between ceramic particles and their interaction with the matrix. 
These combined effects could lead to a more efficient restriction of dislocation motion 
and a further enhancement of hardness. 

Additionally, reinforcements can improve the distribution of applied stresses 
throughout the composite, minimizing stress concentrations and preventing localized 
deformation, thus contributing to overall hardness. Hybrid reinforcements offer 
additional benefits, including the following: Possibly due to the synergistic effects of the 

Figure 8: Effect of reinforcement on the Shear Modulus in different aluminum 
matrix composites (AMCs).

reinforcements and their interaction with the matrix, the AA6061/CrC+TaC composite 
demonstrates the highest microhardness compared to other composites. Their role is 
to obstruct the movement of dislocations, which ultimately increases the resistance 
to plastic deformation they provide. All the reinforced composites have a higher 
Vickers hardness than the unreinforced AA6061, as shown in Figure 9. This confirms 
that adding ceramic particles significantly improves the material’s indentation and 
plastic deformation resistance. AA6061/TaC (tantalum carbide reinforcement) has 
the highest Vickers hardness (114.4 HV), showing the most significant improvement 
(38.2%) in hardness compared to the unreinforced material. There is a clear trend of 
increasing hardness with adding ceramic particles. Individual reinforcements like 
Chromium Carbide (CrC) and Niobium Carbide (NbC) offer substantial improvement 
(14.5% and 26.2%, respectively). Combining these particles (CrC+TaC and CrC+NbC) 
leads to even greater improvements in hardness (56.3% and 43.5%, respectively).

Conclusion 

This research highlights the effectiveness of ceramic particle reinforcement, 
particularly combinations like CrC+TaC, in significantly improving the stiffness of 
AA6061. The effectiveness of transition metal carbide reinforcements in refining the 
grain size of AA6061 nanocomposites produced via FSP. The findings offer valuable 
insights for developing novel materials with enhanced mechanical properties through 
optimized grain size control. Reinforcing AA6061 with ceramic particles, particularly 
CrC, TaC, or their combination (CrC+TaC), significantly enhances resistance to 
shearing forces. However, the choice of reinforcing particle can influence the degree 
of improvement, as observed with NbC. The combination of ceramic particles shows 
even higher microhardness than those with single reinforcements. This phenomenon 
suggests potential synergistic effects between the different particles and their 
interaction with the matrix, leading to a more efficient restriction of dislocation 
motion and further hardness enhancement.
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