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Introduction

The existence of pores within materials has been identified, since very long ago, as having a pivotal role w.r.t. porous 
materials’ behavior, in a great variety of phenomena: Swelling, bubble/pore lattice formation, micro-structural changes - e.g. 
due to bubble/pore migration (especially at high temperatures) plus coalescence or ‘collisions’ - and, response to complex 
loading conditions, structural stability (including in geo-mechanics), mechanical-electrical-thermal properties’ variations, 
etc. [1-5]; with all these being greatly influenced by the specific characteristics of the porosity, i.e. the numbers, sizes, 
positions, internal pressures of the pores, and their strain fields’ (=elastic) interactions and total volumetric occupation. 
Hence, the strong research/industrial interest in the aforementioned interactions, both theoretical and experimental, since 
more than half a century ago, e.g. [6]. Mechanical forces on bodies lead to displacements (deformation, motion/movement). 
For instance, a bubble in a liquid is ‘pushed upwards’ due to buoyancy the same way as a balloon in the sky. Pores (also called 
cavities or bubbles) inside solids - e.g. elastic and isotropic - do move [6,7] but via a different mechanism: Matrix atoms from 
one side of the pore surface ‘travel’ to the opposite side, by diffusion, and thus the pore ‘moves’. So, for a pair of pressurized 
holes/pores within infinite matrix, their motion closer or farther from each other is dictated by a ‘generalized force’ causing 
a ‘generalized displacement’ of the holes/pores [6-9]. For mathematical simplicity, a pair of 3-D equipressurized/equisized 
pores (of radius R, and internal pressure P, e.g. due to entrapped gas), in an ‘infinite’ solid, is routinely modeled as a pair of 
infinitely long (parallel) cylinders, i.e. 2-D equipressurized/equisized holes [2-5,10-12]; as per Figure 1. The matrix is taken, 
initially, as elastic and isotropic. The scope is to use plane strain elasticity in order to determine the interaction (repulsion 
or attraction) between this pair of holes. However, even with the simplification of 2-D geometry, the problem remains very 
complicated mathematically, thus requiring some further degree of approximation. Consequently, the methodology of 
approximation, and the used assumptions, are crucial elements for obtaining the correct result. Herein, a methodology is 
established, based on first principles, in order to go through the various proposed solutions appearing in the literature; for 
the purpose of clarifying/identifying the route to obtaining sound results, backed by experimental evidence.
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Porosity plays a crucial role in materials’ behavior as regards swelling, bubble/pore lattice formation, micro-structural 
changes-e.g. due to bubble/pore migration (especially at high temperatures) plus coalescence or ‘collisions’ - and, response 
to complex loading conditions, structural stability (including in geo-mechanics), mechanical-electrical-thermal properties’ 
variations, etc.; through a complex dependence upon the numbers, sizes, positions, internal pressures of the pores, in 
addition to their strain fields’ (elastic) interactions and total volumetric occupation. Hence the pivotal question about the 
nature, repulsive or attractive, of the elastic interaction among the pores; tackled since the 1950s by pioneers in the micro-
mechanics of materials science (e.g. Eshelby). Herein it is proven, in a physically and mathematically rigorous way, that 
matrix-atoms are diffusing around each pore, practically leaving from one side of the pore and depositing on the opposite 
(from low-stress regions to high-stress ones), thus forcing the interacting pores to ‘repel’: In line with experimental evidence 
which strongly suggest repulsion; e.g. the existence of gas bubble lattices in solids (difficult to justify in a regime of mutual 
bubble attraction), or, of moving bubbles in solids (due to thermal gradients), which when converging towards ‘collision’, 
rotate around each other rather than coalesce. Contrary to opposite results of previous calculations - i.e. ‘repulsion-not-
attraction’ -which, in order to circumvent physico-mathematical complexity, rely upon algebraic manipulations and 
idealized models (and/or boundary conditions) that are physically unattainable.

Abstract

Figure 1: Two equisized pores of radius R under internal pressure P at tip-to-tip distance/separation L – within an 
‘infinite’ matrix where the (2-D) pores are depicted as ‘infinitely’ long cylinders along the ‘paper depth dimension 
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Methods

A twofold approach is taken herein in order to address the problem (of inter-
hole/pore elastic interaction): Energetic and Thermodynamic Methodologies. From 
the Energetic Methodology’s point of view, one focuses on the energy needed for the 
neighboring and interacting (elastically) pores to move, either towards to, or away 
from, each other. The primary target is not so much to find the exact amount of energy 
necessary for such motion(s), but rather to identify the possible source(s) that can 
supply the aforementioned energy. In addition to identifying which way/direction this 
energy will ‘incline’ particular chunks of matrix-atoms to move, so that the relevant 
pore motion can be revealed. From the Thermodynamic Methodology’s point of view, 
one focuses on the variation of the total Gibbs energy as the holes approach to, or 
move away from, each other; i.e. hole/pore motion will be dictated by the minimization 
of the total Gibbs energy [6]. For the total Gibbs energy, one must account for both 
the matrix and the gas (which fills the holes/pores producing the pressure). Regarding 
the hole pressures, some authors assume [2] that they are constant (and equal for all 
holes) throughout the process of hole/pore motion, even when the holes’ volumes are 
assumed to be changing (during motion, under isothermal conditions); this being a 
violation of the gas law (not accepted herein). 
 
Results 

Original case – two equipressurized & equisized holes

For two equi-sized/equi-pressurized holes in an elastic and isotropic matrix, the 
question is whether their interaction is attractive or repulsive; i.e. whether diffusion 
(as described previously) will lead their in-between initial separation L = LI to become 
(subsequently) LII<LI, or, LII>LI, respectively (under isothermal conditions). 

The matrix surface (gas/matrix interface) area has extra strain energy w.r.t. the 
bulk of the matrix:

{Surface Energy} = γ∙2πR∙1 (1)

where γ is the surface energy per unit area of the matrix (and ‘1’ is the unit length).

During ‘I’ → ‘II’, by taking the boundary condition P = constant at radius = 
R (also within the pore) regardless of pore motion - as done in almost all previous 
calculations (e.g. see review in [6], as well as [2-5,10,12-14]) - one is obliged to take both 
the volume and the surface area of the pores as constant as well (due to the gas law, 
given the isothermal conditions). Thus, the total surface energy of the pores remains 
also constant. In order for the (gas-filled i.e. pressurized) pores to either approach 
or distance themselves, a number of matrix atoms need to move (by diffusion from 
one pore side to the opposite), and this requires energy. Within the (isolated) system 
‘matrix + gas’, there are three repositories that can supply the needed energy to such 
pores during/for their motion towards to, or away from, each other: {1st} the (matrix/
gas interface) surface energy; {2nd} the strain energy of the matrix; {3rd} the kinetic 
energy of the gas atoms (i.e. the internal energy of the pore gas, which depends only on 
temperature). As explained above, the 1st is inaccessible, since it stays constant; the 3rd 
is unavailable in an isothermal process as herein; inevitably, the 2nd has to diminish.

 
 Hence, the pores will take the ‘direction’ (move closer or farther) of diminishing 

strain energy.

 In [3,4] exact analytical expressions have been derived regarding the said strain 
energy:

 (2)

where G ̂ is the shear modulus, and E0 is the strain energy of an isolated pressurized 
hole within an ‘infinite’ isotropic matrix [15]. Therefore, matrix strain energy is 
inversely proportional to pore separation (⇒ repulsion); QED. The above result, is fully 
consistent with matrix atom diffusion directivity (from one pore side to the opposite): 
Matrix atoms diffuse towards relaxing stress concentrations (from low stress regions 
to high stress ones) -e.g. [16] (Eq. (4) pg. 369 etc.), and the phenomenon of diffusional 
creep [17] - i.e. their motion is compatible with repulsion, since high stresses are more 
pronounced between the holes/pores rather than on the opposite side(s) [10]. This 
result has significant repercussions in a variety of phenomena; e.g. regarding material 
swelling: If (or when) there are no pore-to-pore repulsions (more so if/when there are 
pore-to-pore attractions), pore coalescence is enhanced and individual pores tend to 

get larger, although total volumetric porosity stays the same; but larger pores grow 
faster either by diffusion (and/)or creep of the matrix (which surrounds them) [17,18]; 
thus, swelling is enhanced as well (while fracture life is likely shortened). 
 
Generalization – unequally pressurized pores of unequal sizes

The results of the previous Section-3.1 are by no means limited to the symmetries of 
equal sizes and internal pressures of the holes/pores. The rationale elucidated 

above is valid for all possible pressure-size inequalities; thus, repulsion or 
attraction depends on the functional form of the strain energy for every case. Hence, 
following [3], three more cases - other than Eq. (2) taken as ‘Case (i)’- can be shown for 
comparison: ‘Case (ii)’ for an equilibrium hole (internal pressure = surface tension) 
vs. a pressurized one, ‘Case (iii)’ for a pressurized hole vs. an equilibrium one of a 
much larger size, ‘Case (iv)’ for an under-pressurized hole (internal pressure < surface 
tension) vs. an equally pressurized one; Etot being the total (matrix) strain energy

(Etot ≡ Ematrix) in Figure 2 below [3]:

Comparative graph for curve/case

{‘i’} of Eq. (2) ,

and the analogous curves,
 

{‘ii’} ,

{‘iii’} 

{‘iv’} 

Figure 2: Total strain energy over single-pore strain energy for two pores … 
(i) one pressurized the other equally pressurized both of same size & (ii) one 
equilibrium the other pressurized both of same size & (iii) one pressurized the 
other equilibrium of much larger size & (iv) one pressurized the other equally 
under-pressurized both of same size [3] – L and R as per Figure 1.
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 Since the strain energy is always inversely proportional to inter-pore separation, 
repulsion happens in all cases. The same is true, regardless of the magnitude of the 
pressure of each individual hole in the interacting pair [4]. Interestingly enough, 
repulsion is also obtained when a pair of equilibrium pores (holes), within ‘infinite’ 
matrix, is subjected to a remote (uniform) tensile stress perpendicular to the plane of 
the holes’ (infinite cylinders’) axes; again, this is because the strain energy is inversely 
proportional to inter-pore separation [5]; see Figure 3. The common characteristic in 
all cases (Figures 2-3) is the stress concentrations within the region in-between the 
holes [10,11]: As elucidated previously, atomic fluxes drive matrix atoms to this region, 
i.e. fluxes initiating from the region of the opposite side of the pores (opposite to their 
in-between region), thus ‘making’ the pores move away from each other (repulsion); in 
absolute consistency with the mechanism already described (about the stored strain 
energy ‘fueling’ the pore motion).

Thermodynamics of elastic repulsion

Coming back to the ‘original case’ (two elastically interacting equi-pressurized/
equi-sized holes embedded in ‘infinite’ matrix), it is shown in the following that one 
can obtain the same result (repulsion) as per Eq. (2), via a thermodynamic calculation 
by incorporating the P = constant assumption of 

  . (3)

Then, under isothermal conditions, and due to the ideal gas law,

   (4)

where VII, pore, VI, pore are the deformed volumes of the holes (i.e. after the application 
of pressure).

Pore movement in a solid can be treated via the Gibbs energy,

G = U + PV - TS (5)

where G, U, P, V, T, S have their standard/usual meaning, i.e. Gibbs energy, 
internal energy, pressure, volume, temperature, entropy, respectively; therefore, taking 
a priori that LII>LI, nature will ‘choose’ repulsion if 

GII<GI, and attraction if GII>GI [6].

 Following [6] (page 151),

 (6)

where the subscript ‘surface’ refers to the change in the gas/matrix surface energy.

For the gas (Q=heat, W=work, cV = specific heat capacity under constant volume, 
n= # of the gas particles in a pore, k=Boltzmann constant),

 
 

 (7) 
 

No work (Wgas) is done, because pressures and volumes of all (gas-filled) pores 
remain constant, thus, due to the first law of thermodynamics:

 (8)

 For the ‘infinite’ matrix [6] (page 151),

 
 (9)

since the {External Forces’ Potential Energy} does not change, because gas 
pressures and volumes are identical in ‘I’ and ‘II’.

 As previously explained,

 (10)

which is a tautology anyway, since each hole’s (pore’s) volume/dimensions is/are 
constant, so, its surface area remains constant as well (⇒ its surface energy too). 

 From Eqs. (3-10), under isothermal conditions, 
 

 (11)

From Eq. (2) it is seen that the difference in the internal (=strain) energy of the 
matrix, for pores ‘moving’ apart (LII>LI), is negative (⇒ repulsion); QED. 

Discussion and Conclusion

By employing first principles, it is confirmed that equi-pressurized and equi-
sized holes/pores in an isotropic and linear elastic matrix, are ‘inclined’ to ‘move’ 
apart (=repulsion), as per the Davanas [3-5] analytic solutions, and the Teltow [14] 
approximation; due to the actions of ‘generalized forces’ resulting in ‘generalized 
displacements’, e.g. as per Ref. [6] (pages 151 & 152 about ‘effective forces’). The natural 
mechanism appears to be as follows: In order for the pores to move farther from each 
other, by the process described earlier (diffusion of atoms from one pore side to the 
opposite, towards relaxing stress concentrations and high stress regions in-between the 
pores), the only energy source capable of fueling such a movement is the stored strain 
energy of the matrix; consequently, the latter (Ematrix) diminishes as per Section-3.2; 
consistently with the thermodynamic analysis (minimization of the Gibbs energy) 
as per Section-3.3. These two proofs (energetic & thermodynamic) are the verifying 
clarifications, as regards the Davanas’ works [3-5], which re-affirm that the gradient 
(w.r.t. separation) of the strain energy alone is what decides the nature (repulsive-not-

Figure 3: Repulsion between two equi-sized equilibrium pores within ‘infinite’ 
matrix under remote & uniform tensile stress perpendicular to the plane of the 
cylindrical holes’ axes as per E(R/(2R+L)):E(0.25)∝L-3 [5] – ‘interpore separation’ 
≡ L and ‘intercavity distance’ ≡ (L+2R) where L & R as per Figure 1 (i.e. for L→0 
⇒ R/(L+2R)→0.5).
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attractive) of pore-to-pore interactions (negative gradient w.r.t. separation ⇒ repulsion 
and vice versa).

 
Thus, among other phenomena, taking as an example material swelling, one 

sees that pore-to-pore repulsion can play a major role: By/when hindering pore 
coalescence, it does not allow pores to get fewer but larger at the same volumetric 
porosity; hence, since larger pores grow faster than smaller ones (both by diffusion 
and matrix-creep[17,18]), swelling can be hindered as well (moreover, fracture life can 
be extended). The opposing views [2,13,19,20] - i.e. attraction instead of (the correct) 
repulsion - may be due to a variety of reasons: Utilization of multiple assumptions 
which can lead to results hesitantly applicable and only at extreme cases; e.g. 
approximations by Eshelby [19], commensurate only for holes very far away from each 
other, as indicated by Nichols [6] & Willis and Bullough [20] ]; i.e. when the interaction 
is expected to be minimal anyway, if not non-existent altogether. Or, employment of 
assumptions subsequently proven unsound; e.g. assuming uniform displacements at 
the hole surfaces [13,19-21]; analytically refuted by a later calculation [3]. Or, usage of 
the P = constant assumption - i.e. the internal pressures of the pores being equal and 
constant at all times [2] - even when the pores’ volumes are assumed changing during 
pore motion (under isothermal conditions, in violation of the gas law); unknown when 
applicable, if ever (as quoted from Ref. [2] … “A constant pressure setting, however, 
would not be applicable to problems where the pressure changes with expansion, such 
as expansion of a cavity containing gas, where the pressure and volume are coupled 
together by gas law”). 

The latter paper, i.e. Saeedi & Kothari [2], as most recent/modern, deserves a few 
more words: It appears dubious, also, w.r.t. the so-called ‘potential energy method’ (to 
calculate forces at various places in the ‘matrix + gas’ system), which it uses like if there 
exists a ‘pushing-closer’ mechanical force, analogous to the case of a buoyancy-driven 
‘upward-push’ of a bubble in a liquid or a balloon in the sky. But such a mechanical 
force would have a point (or surface or volume) of application, not obvious at all where, 
and not mentioned at all in the said paper. In addition, the ‘potential energy’ stemming 
from the pore-gas pressure (force), is treated in a questionable manner: E.g. for the case 
of an isolated hole embedded in ‘infinite’ matrix, the potential energy (per unit length) 
due to the pore pressure, is taken as equal to {–P∙ΔA*}; where ΔA* is supposed to be the 
change in area of the hole due to deformation, computed as ΔA* = π∙(α2–Α2) , where α 
is the deformed radius of the hole (i.e. after the application of pressure), and, Α is the 
un-deformed radius of the hole; although, as seen from Figure 1, it is rather ΔA* = 
2∙π∙(α–Α) ∙1 , with ‘1’ being the unit length. Hence, the misconception about the nature 
(mechanical versus ‘generalized’) of the pore-to-pore force (even more so if coupled 
with numerical/algebraic errors of unknown/fundamental gravity), can certainly be 
a source of unsound results; especially in the light of strong experimental evidence: 
The data from an old but classic/focal experimental paper definitely attest to the 
above conclusions (repulsion); see Barnes & Mazey’s [7] page-52 quotation, regarding 
diffusional motion of pores/bubbles, due to thermal gradients, in a matrix: “…that a 
short range repulsion does exist between these bubbles … there is repulsion due to a 
strain field … the small bubble is seen to rotate about the larger bubble like a satellite 
during the heating pulses and yet it has not been assimilated by the larger bubble…”. 
The same holds, when elasticity applies, for the phenomenon of gas bubble lattices 
in solids [22-27]; where it is difficult to reconcile the fact that these bubbles do not 
collapse/coalesce into one another with the claim of mutual attraction among them. 
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