Photobiomodulation Associated with Beta Tricalcium Phosphate Graft to Improve Initial Bone Healing

Roberta Gava Pratti1, Avacir Casanova Andrello1, Dari de Oliveira Toginho Filho1, Wilson Trevisan Júnior3 and Solange De Paula Ramos1*

1Research Group in tissue regeneration, Adaptation and repair, Department of Histology, State University of Londrina, Brazil
2Department of Physics, State University of Londrina, Brazil
3Research Group in tissue regeneration, adaptation and repair, Department of Oral Medicine, State University of Londrina, Brazil

Abstract

Aim: Beta Tricalcium Phosphate (βTCP) is a synthetic bone substitute with osteoconductive properties, however, it is quickly reabsorbed, which can result in a smaller volume of newly formed bone. Light-emitting diode (LED) therapy has osteoinductive and anti-inflammatory properties, accelerates healing, and may improve the clinical performance of βTCP grafts. The work evaluated the effect of LED therapy (630 nm, 4J/cm²) on βTCP grafts in the initial bone repair of bone defects in rat calvaria.

Methods: Forty-two male Wistar rats were randomly divided into two groups: Control and LED groups. In each animal, two perforations were made in the skull (4.5 mm diameter), one filled with βTCP (TCP) and the other with a blood clot (Co). Seven animals from each group were euthanized on the 7th, 14th and 30th days and the samples were submitted to histological and microtomographic analysis.

Results: The Co-LED and TCP-LED defects presented increased defect areas and no inflammatory reaction after 7 days. After 14 days increased areas of primary bone were observed in the TCP and TCP-LED groups. After 30 days, TCP-LED defects presented reduced area and no foreign body reaction.

Conclusion: Phototherapy associated with βTCP accelerated the initial bone repair process compared to the isolated use of βTCP.

Keywords
Bone graft; Biomaterial; Bone matrix; Low level light therapy

Introduction

Biomaterial grafts are synthetic material substitutes for the induction of bone regeneration. They are widely used in the treatment of periodontal disease, implantology, maxillary sinus lift, and alveolar ridge expansion [1-5]. Although autogenous bone grafts show good clinical performance, due to their osteoinductive and osteoconductive capacity, the morbidity (pain, bleeding, sensorial disturbances, bone defects) associated with the donor area is a limitation of the technique [6,7]. Among the alloplastic materials used as bone substitutes, clinical studies suggest that β-Tricalcium Phosphate (βTCP) can be used for the same purpose as autogenous grafts and in sinus lift grafting [1,8,9]. Studies have shown that βTCP is quickly reabsorbed, which may result in a smaller volume of the newly formed bone when compared to autogenous bone and bovine bone grafts [4,5,10-11]. Besides, βTCP may promote some undesirable reactions during the process of bone regeneration, such as the formation of fibrosis, chronic inflammation, and foreign body reactions, and may not reconstitute the entire bone volume [3,11-13]. The low osteoinductive capacity of βTCP makes the beginning of bone regeneration slower, compared to the bovine bone graft and autogenous graft (1,11,14). To overcome this problem, other studies associated pure (monophasic) or biphasic (hydroxyapatite-associated) βTCP graft with insulin-like growth factor-1 and vascular endothelial growth factor [13], platelet-derived growth factor and recombinant bone-morphogenetic protein-2 [15], alendronate [3], stem cells derived from adipose tissue [10] and altering physical properties adding strontium-containing phosphate-based glass [16]. These procedures seem to improve the biological and physical characteristics of the βTCP graft, promoting osteoinductive activity, and increasing the volume of newly-formed bone tissue (2,4,13,17). However, the addition of growth factors, cells, and physicochemical modifications of the βTCP particle may increase the cost of the production process or require additional laboratory treatment of the product.

Photobiomodulation using low-level lasers or light-emitting diodes (LED), has been used in the stimulation of bone tissue repair due to its anti-inflammatory and osteoinductive properties [18-20]. Photobiomodulation accelerates bone repair, and induces the differentiation and proliferation of osteoblasts, resulting in increased bone matrix formation [19,21]. The association of the osteoconductive capacity of βTCP and bone substitutes with the osteoconductive property of photobiomodulation could result in acceleration of the deposition of the primary bone matrix. An experimental study in rats demonstrated that phototherapy is capable of inducing the expression of bone morphogenic growth factors such as bone morphogenetic proteins 1, 2, and 4 (BMP 1, 2, and 3), runt-related transcription factor-2 (RUNX-2), and transforming growth factor beta-1 (TGFβ1) when applied in the first three days of bone repair [18]. Besides, the formation of primary bone began at the edges of the bone defect from the third day, being more advanced in animals submitted to phototherapy [18]. Considering the osteoinductive effects of photobiomodulation and osteoconductive effects of the βTCP graft, the objective of this study was to evaluate if the application of phototherapy in the first three days of bone repair can accelerate the initial deposition of primary bone in critical-sized defects in the calvaria of rats.

Material and methods

Animals

The procedures described in this study were approved by the Committee of Ethics in Animal Experimentation of the State University of Londrina (protocol n.24705/11). All procedures described herein conformed to the Ethical Principles for
Experimental Design

The animals were randomly divided into two groups of 21 animals, one being a Control group and the other undergoing photobiomodulation by light-emitting diode (LED) irradiation. In each animal, two perforations were performed in the skull, one randomly filled with TCP graft and the other with a blood clot (Figure 1). Seven animals from each group were euthanized on days 7, 14, and 30. Bone defects were classified as:

Control group:
- Co: bone defects filled with a blood clot.
- TCP: bone defects filled with TCP.

LED therapy group:
- Co-LED: bone defects filled with a blood clot and treated with photobiomodulation.
- TCP-LED: bone defects filled with TCP and treated with photobiomodulation.

Surgical procedures

The animals were sedated and anesthetized with Ketamine hydrochloride solution (50mg/kg, Dopalen, Sbsp; Espoo Indústria e Comércio, Paulína, SP, Brazil) and Xylazine hydrochloride (10mg/kg, Xilazin, Rhofarmeria Indústria Farmacêutica, Hortolândia, SP, Brazil). Next, a surgical trichotomy was performed, the surgical area was cleaned with 2% iodinated solution and local anesthesia was applied with a solution of 1% Lidocaine (Farmacêuticos, Itapira, SP, Brazil) to avoid excessive bleeding during the surgical procedure. The linear coronal incision was made in the sagittal plane, with a scalpel blade n. 15, measuring about 1.5 cm in length. The periosteum was divulsed with a Molt blade n. 15, measuring about 1.5 cm in length. The periosteum was divided with a Molt periosteal elevator exposing the outer surface of the skull. Two bone perforations were performed in the parietal bones, preserving the cranial sutures and meninges with a low-speed trephine bur (Trefina 4.3 mm, Neodent, Curitiba, PR, Brazil), under refrigeration to avoid excessive bleeding during the surgical procedure. The linear coronal incision was made in the sagittal plane, with a scalpel blade n. 15, measuring about 1.5 cm in length.

Histological analysis

Microtomography (micro-CT) was performed as described by Park (2007) [22]. The images were acquired in a SkyScan 1172 microtome (Bruker micro - CT, Kontich, Belgium) with a Hamamatsu 100/250 XR tube (Hamamatsu, Tokyo, Japan) with a voltage of 75 Kv and maximized power of 10W. A filter of 0.5mm was used for the acquisition of projections. For each sample, a micro - CT scanning was completed in an approximate sagittal plane through the anteroposterior profile of the skull, with a resolution of 8 µm and exposure time of 1000 ms. The micro-CT images were reconstructed using NRecon software version 1.6.4.7 (SkyScan, Kontich, Belgium), and performing corrections of artifacts. The software CTan version 1.11.9.1 (SkyScan, Kontich, Belgium) was used to select the region of interest (ROI), perform binarization of the image, and calculate the parameters of interest. Measured indexes determined the location and area of inorganic bone matrix deposition, the relative volume of graft material, relative soft tissue and hard tissue areas, the thickness of bone trabeculae, and bone density.

Statistical analysis

Variables are expressed as mean (standard deviation) when the Shapiro-Wilk test indicated normal distribution of data. Differences between groups of defects were assessed using the ANOVA test, followed by the Tukey test (parametric data) or Student t-test. A difference between significant values was considered when P <0.05. The mean number of animals per group was calculated based on the difference between the volume area of bone formation in critical-sized defects in rat calvaria after four weeks, analyzed by micro-CT images [23]. A total of seven animals were included, considering 20% of lost, to achieve a statistical power of 80% and a significant level of 5%.

Results

The microtomographic images demonstrated the particulate TCP graft-filled bone defects (Figure 2a) in some areas the graft material extravasated beyond the edges of the bone defects (Figure 2b). Particulate TCP presented high radiopacity and was not resorbed until 30 d in the TCP and TCP-LED defects. After 7 d, the Co-LED and TCP-LED groups demonstrated an increase in the area of the bone defect, suggesting that the edges of the lesion had been reabsorbed (Figure 2c). However, after 14 d, the area of the defects in the Co-LED and TCP-LED groups was reduced in relation to the Co group and did not differ from the TCP group (Figure 2d). After 30 d, the TCP defects presented a smaller area than the Co and Co-LED groups, and the smallest defect area was observed in the TCP-LED group (Figure 2e).

Histological Analysis

7 days

At 7 d, bone defects in all animals were filled with granulomatous tissue and presented a proliferation of peristium remaining at the edges of the bone defects (Figure 3a). In the Co group of bone defects, hemorrhagic areas close to the bone surface (Figure 3a) and the presence of chronic inflammatory infiltrate (mononuclear cells and few polymorphonuclear leukocytes) were observed. The central region of the defect was filled with granulomatous-looking tissue containing fibroblast-like cells, and a non-calcified bone matrix deposition, the relative volume of graft material, relative soft tissue and hard tissue areas, the thickness of bone trabeculae, and bone density.

Histological analysis

Microtomography (micro-CT) was performed as described by Park (2007) [22]. The images were acquired in a SkyScan 1172 microtome (Bruker micro - CT, Kontich, Belgium) with a Hamamatsu 100/250 XR tube (Hamamatsu, Tokyo, Japan) with a voltage of 75 Kv and maximized power of 10W. A filter of 0.5mm was used for the acquisition of projections. For each sample, a micro - CT scanning was completed in an approximate sagittal plane through the anteroposterior profile of the skull, with a resolution of 8 µm and exposure time of 1000 ms. The micro-CT images were reconstructed using NRecon software version 1.6.4.7 (SkyScan, Kontich, Belgium), and performing corrections of artifacts. The software CTan version 1.11.9.1 (SkyScan, Kontich, Belgium) was used to select the region of interest (ROI), perform binarization of the image, and calculate the parameters of interest. Measured indexes determined the location and area of inorganic bone matrix deposition, the relative volume of graft material, relative soft tissue and hard tissue areas, the thickness of bone trabeculae, and bone density.

Statistical analysis

Variables are expressed as mean (standard deviation) when the Shapiro-Wilk test indicated normal distribution of data. Differences between groups of defects were assessed using the ANOVA test, followed by the Tukey test (parametric data) or Student t-test. A difference between significant values was considered when P <0.05. The mean number of animals per group was calculated based on the difference between the volume area of bone formation in critical-sized defects in rat calvaria after four weeks, analyzed by micro-CT images [23]. A total of seven animals were included, considering 20% of lost, to achieve a statistical power of 80% and a significant level of 5%.

Results

Microtomographic analysis

The microtomographic images demonstrated the particulate TCP graft-filled bone defects (Figure 2a) in some areas the graft material extravasated beyond the edges of the bone defects (Figure 2b). Particulate TCP presented high radiopacity and was not resorbed until 30 d in the TCP and TCP-LED defects. After 7 d, the Co-LED and TCP-LED groups demonstrated an increase in the area of the bone defect, suggesting that the edges of the lesion had been reabsorbed (Figure 2c). However, after 14 d, the area of the defects in the Co-LED and TCP-LED groups was reduced in relation to the Co group and did not differ from the TCP group (Figure 2d). After 30 d, the TCP defects presented a smaller area than the Co and Co-LED groups, and the smallest defect area was observed in the TCP-LED group (Figure 2e).

Analysis of the volume of the remaining TCP particles and the edges of the bone defects of the grafted groups (Figure 2a) suggests that photobiomodulation did not promote accelerated reabsorption of graft material and did not alter the porosity of primary bone tissue.
Figure 2: Microtomographic Analysis of bone defects. Bone surface (a) and transverse plane (b) of bone defect of the TCP-LED group after 30 days. (a) Radiopaque graft particles filled the bone defect. The yellow box indicates one ROI and the yellow arrows indicate areas with primary bone. (b) In the transverse section, extravasation of the graft material (white arrows) is observed over the internal and external periosteum region of the skull. The red line demonstrates the diameter measure considered to calculate defect areas. Area of bone defect at 7 days (c), 14 days (d), and 30 days (e). *** p <0.005, ** p <0.01 and * p <0.05 in relation to Co defects. ### p <0.01 in relation to the TCP, Tukey’s test.

Figure 3: Microtomographic Analysis of bone defects. Bone surface (a) and transverse plane (b) of bone defect of the TCP-LED group after 30 days. (a) Radiopaque graft particles filled the bone defect. The yellow box indicates one ROI and the yellow arrows indicate areas with primary bone. (b) In the transverse section, extravasation of the graft material (white arrows) is observed over the internal and external periosteum region of the skull. The red line demonstrates the diameter measure considered to calculate defect areas. Area of bone defect at 7 days (c), 14 days (d), and 30 days (e). *** p <0.005, ** p <0.01 and * p <0.05 in relation to Co defects. ### p <0.01 in relation to the TCP, Tukey’s test.

Figure 4: Histological images of bone defects in the skull of Wistar rats after 14 days. (a) Control (Co): bone defect filled with a blood clot. (b) Co-LED: bone defect filled with a blood clot and treated with photobiomodulation. (c) TCP: bone defect filled with βTCP. (d) TCP-LED: bone defect filled with βTCP bone graft and photobiomodulation. The black arrow indicates areas of bone neoformation. RO: bony ridge, * βTCP particle. 40X, staining with Hematoxylin and Eosin.

Figure 5: Histological images of bone defects in the skull of Wistar rats after 30 days. (a) Control (Co): bone defect filled with a blood clot. (b) CoLED: bone defect filled with a blood clot and treated with photobiomodulation. (c) TCP: bone defect filled with βTCP. (d) TCP-LED: bone defect filled with βTCP bone graft and photobiomodulation. (e) TCP, 200X. (f) TCP-LED, 100X. The yellow arrow indicates areas of bone neoformation. The arrowhead indicates a foreign body giant cell. RO: bony ridge, * βTCP particle. 40X, staining with Hematoxylin and Eosin.

Figure 6: Histological images of bone defects in the skull of Wistar rats after 30 days. (a) Control (Co): bone defect filled with a blood clot. (b) CoLED: bone defect filled with a blood clot and treated with photobiomodulation. (c) TCP: bone defect filled with βTCP. (d) TCP-LED: bone defect filled with βTCP bone graft and photobiomodulation. (e) TCP, 200X. (f) TCP-LED, 100X. The yellow arrow indicates areas of bone neoformation. The arrowhead indicates a foreign body giant cell. RO: bony ridge, * βTCP particle. 40X, staining with Hematoxylin and Eosin.
Osteoclasts and resorption gaps were observed, close to areas of periosteum proliferation and formation of primary bone (Figure 3b). In bone defects filled with ßTCP graft (TCP), hemorrhage areas were observed close to the bone surface (Figure 3c). The particles of the ßTCP graft within the granulation tissue presented areas of resorption (presence of osteoclasts) and areas of ossification near the bone surface (Figure 3e). In the TCP-LED bone defects, no areas of inflammatory infiltrate were observed. There were areas of bone resorption and areas of bone neoformation close to the periosteum (Figure 3d). There were ßTCP particles close to areas of bone neoformation (Figure 3f), associated with areas of graft resorption similar to the TCP group. 7 days. In the irradiated defects (Co-LED and TCP-LED), bone remodeling appears to have been initiated earlier, and at 7 days there were extensive areas of bone resorption on the margin of the defects. This reaction was also observed in the non-irradiated defects (Co and TCP) but after 14 d. This suggests that bone tissue damaged in the surgical procedure was reabsorbed more rapidly after photobiomodulation. Indeed, experimental studies have shown that irradiation of bone tissue promotes bone remodeling, with activation of osteoblasts and osteoclasts [28,30]. The ßTCP may promote some undesirable reactions during the process of bone regeneration, such as the formation of fibrosis, chronic inflammation, and multinucleated giant cell/bone foreign body reactions, and not reconstitute the entire bone volume [3,11-13]. In the present study, foreign body reactions and fibrosis were observed in the TCP group after 30 d. However, the TCP-LED group did not present a foreign body reaction, suggesting that phototherapy may stimulate bone matrix synthesis and remodeling of ßTCP graft particles, inhibiting the formation of tissue fibrosis. The formation of multinucleated giant cells and fibrosis was observed around biomaterials inserted in soft tissues and bone grafts and is associated with the activation and recruitment of macrophages in the initial stages of the inflammatory process [31-33]. However, the use of anti-inflammatory agents can reduce fibrosis and multinucleated giant cell formation [34,35]. A study demonstrated that photobiomodulation could inhibit the acute inflammatory reaction and blunt foreign body reactions in an experimental model of osteoarthritis [36]. The anti-inflammatory properties of photobiomodulation include reducing differentiation of macrophages towards M2 (anti-inflammatory phenotype), a decrease of M1 recruitment, and inhibition of production of cytokines regulating foreign body reactions, such as tumor necrosis factor-alpha and interferon-gamma [29,37-40]. As observed in the present study, inflammatory cell infiltration was absent in the Co-LED and TCP-LED after 7 days. So the absence of inflammatory cell migration might be accounted for the inhibition of foreign body reaction in TCP-LED defects. 14 days. After 14 d, primary bone tissue was observed at the edges of the bone defects associated with the periosteum (Figure 4). The center of the defects was filled by fibrous granulation tissue, with extensive vascularization. Areas of bone resorption and formation of primary bone spicules were observed in the Co and TCP bone defects (Figures 4a & 4b). In the Co-LED and TCP-LED bone defects, there were areas of bone neoformation close to the remaining bone at the edge of the defects. In the TCP-LED, ßTCP particles close to the edge of the defect are surrounded by the primary bone (Figure 4d). 30 days. No group demonstrated complete ossification of the bone cavity at 30 d (Figure 5). Co and TCP bone defects showed bone spicules in the periphery of the bone defect (Figure 5a). In the TCP defects group, fibrosis and formation of foreign body giant cells were observed on the remaining graft particles in the central region of the defect (Figure 5c & 5e). On the other hand, in the irradiated defects (Co-LED and TCP-LED) presented primary bone formation along defect margins and no giant cells were present around TCP particles (Figure 5d & 5f). Discussion The present study demonstrated that the use of ßTCP associated with photobiomodulation accelerates the process of bone repair and remodeling. The association of the two treatments seems to have better effects on the remodeling of the bone defect edges, and organic and inorganic bone matrix synthesis. Besides, the blood clot appears to have been more quickly reabsorbed and replaced with granulation tissue, with no evidence of inflammatory reaction, in the groups treated with phototherapy on the 7th day. At 30 d, there was evidence of increased inorganic bone matrix deposition in the grafted and irradiated defects. Previous studies have demonstrated that the association of photobiomodulation with the ßTCP graft can accelerate the deposition of collagen and hydroxyapatite in matrix regenerating bone tissue [17,24,25] or increase the volume of the mineralized matrix after three months [26]. However, the protocols of collagen and hydroxyapatite matrix in regenerating bone tissue [17,24,25] or increase association of photobiomodulation with the ßTCP graft can accelerate the deposition in the grafted and irradiated defects. Previous studies have demonstrated that the therapies separately, even when applied only in the first 3 d of bone repair. Photobiomodulation with ßTCP was demonstrated to be more efficient than the use of the scaffold in critical-sized bone defects [17,24-26]. In the present study, the association of photobiomodulation, the use of grafts may be still necessary to act as an osteoconductive enough bone repair. However, despite the stimulation of osteoblast differentiation by photobiomodulation treatment may not be necessary to improve initial bone repair. As observed in the present study, photobiomodulation accelerates the process of bone repair and remodeling. The ßTCP may promote some undesirable reactions during the process of bone neoformation close to areas of bone neoformation (Figure 3f), associated with areas of bone neoformation close to the reminiscent bone at the edge of the defects. In the TCP-LED, ßTCP particles close to the edge of the defect are surrounded by the primary bone (Figure 4d). The anti-inflammatory and pro-healing effects of photobiomodulation [18,28,29] were similar to those reported by other authors, accelerating the process of bone repair and remodeling. The anti-inflammatory and pro-healing effects of photobiomodulation [18,28,29] were similar to those reported by other authors, accelerating the process of bone repair and remodeling. The anti-inflammatory and pro-healing effects of photobiomodulation [18,28,29] were similar to those reported by other authors, accelerating the process of bone repair and remodeling. Conclusion We conclude that phototherapy applied in the first three days after ßTCP grafting accelerates the initial bone repair and deposition of the inorganic matrix in bone defects, reducing initial inflammatory infiltration, and avoiding foreign body reactions. The association of ßTCP grafts with phototherapy presents better effects on initial tissue repair than isolated treatments. Acknowledgment This work was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) (granting a scholarship to C.P.S., grant n. 06172280886/2015) and by Fundação Araucária – PR, (granting a scholarship to R.P.G, n.174/2015). References 1. Gotla LF, Spin NR, Boos FB, Pereira RS, Garcia IR, et al. (2015) Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: a prospective, randomized, volumetric computed tomography study. International journal of oral and maxillofacial surgery 44(12): 1486-1491. 2. Jelusic D, Zirk ML, Frenitz T, Plancak D, Puhar I, et al. (2016) Monophasic ss- TCP vs. biphasic HA/ss-TCP in two-stage sinus floor augmentation procedures - a prospective randomized clinical trial. Clinical oral implants research 28(10): 175-183. 3. Nainenri R, Ravi V, Subbaraya DK, Prasanna JS, Panthula VR, et a. (2016) Effect of Alendronate with beta - TCP Bone Substitute in Surgical Therapy of Periodontal Intra-Oral Defects: A Randomized Controlled Clinical Trial. Journal of clinical and diagnostic research : JCDR 10(8): ZC113-117. 4. Stiller M, Kluk E, Böhmer M, Lopez MA, Muller MC, et al. (2014) Performance of beta-tricalcium phosphate granules and putty, bone grafting materials after bilateral sinus floor augmentation in humans. Biomaterials 35(10): 3154-3163. 5. Trombelli L, Francescotti G, Stacchi C, Minenna L, Rizzardi O, et al. (2014) Minimally invasive transcrestal sinus floor elevation with deproteinized bone bone or beta-tricalcium phosphate: a multicenter, double-blind, randomized, controlled clinical trial. Journal of clinical periodontology 41(3): 311-319. 6. Weibull L, Widmark G, Ivanoff CJ, Borg E, Rasmussen L (2009) Mortality after chin bone harvesting--a retrospective long-term follow-up study. Clinical implant dentistry and related research 11(2): 149-157. 7. Cordaro I, Tosello F, Muccio PT, Di Torresanto VM, Elpooulos D (2011) Mandibular bone harvesting for alveolar reconstruction and implant placement: subjective and objective cross-sectional evaluation of donor and recipient site up to 4 years. Clinical oral implants research 22(11): 1320-1326. Citation: Pratti RG, Andrello AC, Filho DO, Trevisan W, Ramos SP (2021) Photobiomodulation Associated with Beta Tricalcium Phosphate Graft to Improve Initial Bone Healing. Open Access J Dent Oral Surg 2. 1025

