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Introduction

A glass transition temperature, (Tg), is a temperature when a polymer changes from its glassy state to the rubber state. 
Tg is used to determine the types of use of polymer, i.e., rubber-like polymers such tires for automobile vehicles have Tg lower 
than ambient temperature, while the glass-like polymers such PET bottles have Tg higher. Therefore, to know the Tg values 
would be helpful in the selection and design polymer materials. The polymer Tg could be examined by some experiments 
such as thermos-mechanics [1], volume dilatometry [2], spectroscopy ellipsometry (SE) [3], infrared spectroscopy (FTIR) 
[4], differential scanning calorimetry (DSC) [5], and dynamic mechanical test (DMA) [6]. It is believed that when the 
temperature of one polymer approach to Tg, the polymer suddenly changes its thermal properties, i.e., thermal expansivity 
and motions of molecule chains which can be obtained by the molecular dynamics (MD) simulation. The temperatures-
dependent properties such as density, specific volume, and mean squared displacement (MSD) can be used to determine 
Tg of polymers [7].  A choice of molecular force field is very important success driver for MD simulations. If possible, the 
all-atoms (AA) models are most favored choice due to their ability to capture almost molecular interactions. However, the 
models are limited and not suitable for systems that have a huge particle number and need long simulation time like several 
nanoseconds or much more. The reduced degree of freedom models, then are proposed, such as the united-atoms (UA) and 
the coarse-grained (CG) force filed. By the way, the interactions parameters of UA and CG models are need to be verified by 
available experiments or simulation data based on AA forcefield model [8]. Since the biodegradable polyethylene vanillate 
(PEV) [9,10] polymer is like bio-based polyethylene terephthalate (PET) mimics, and has thermal properties close to PET 
[11], the PEV is promising to replace or blend with PET, to reduce the accumulation of PET in the environment. The ability 
to predict Tg values of PET, PEV and their blended polymers is helpful in the selection and design of blended polymers which 
can avoid some costly experiment works. There are some available forces fields for PET, like AA [12], UA [13] and CG [14] 
models. In the case of PEV, the application of AA model just recently reported [15]. In this priory study, the general force field 
OPLS-UA [16] parameters have been tested for obtaining the Tg of PET and PEV polymers, which could be help in further 
studies of PET, PEV and their mixtures. 
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Abstract

In this study, the glass transition temperature (Tg) of polyethylene terephthalate (PET) and polyethylene 
vanillate (PEV) are obtained by molecular dynamics (MD) simulations using united atoms OPLS-UA model. 
The obtained Tg are found to be about 375K and 378K for PET and PEV polymers, respectively, which are 
a bit higher than those of previous experiments and computer simulation works. This imply the need of 
parameters optimized and validation to be fit for the specific PET and PEV systems before applied in further 
works of their blended systems.

 Figure 1: The corresponding OPLS-UA atom models for a) PET and b) PEV polymers.
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In this study, the general force field of OPLS-UA is applied for long chains 
100DP of both PET and PEV polymers. The DL_FIELD 4.1 [17] is applied for force 
field assignment. Since the OPLS-UA forcefield uses bond constrained model which 
is hard to convert with SHAKE algorithm. In this study, the harmonic bond model is 
applied with the same force constant parameters of OPLS-AA force field [18]. The MD 
simulations are performed using NPT ensemble at 1.0 atm using DL_POLY classic 
package [19]. The partial atomic charges are obtained averagely from the quantum 
optimized of their monomers, dimers, and trimers units. A polymer chain is divided 
into three parts, i.e., head, body and tail as shown in Figure 1. The body has assigned 
zero net charge, the polymer chain can be extended if desired. The time step of 1.0 
fs, the leapfrog integration algorithm, and the Berendsen thermostat and barostat 
with relaxation times of 1.0 ps are applied. All non-bonded interactions were cut at 
12.0 Å with shifted Coulombic potential correction. The systems were run until reach 
their equilibriums and further addition of 1.0 ns to get the average equilibrium box 
lengths for each temperatures, which are used to obtained the specific volume as 
shown in Figure 2. The increasing rate of specific volumes is obtained not constant 
over the temperatures. The increasing rate of trending line at high temperatures 
region (400K-600K) is higher than those of low temperatures region (100K-300K). The 
intersection of these two trending lines defined the Tg of polymers.

Results and Discussion 

Since the main proposed of this study is searching for suitable forcefields that can 
applied in simulations of PET, PEV and will later use in their blended polymers, the 
Tg is mainly discussed here. The obtained Tg of PET and PET using the OPLS-UA are 
about 374K and 378K, These obtained Tg are some larger to available experiment data 
which are about 240-353K for PET [20] and 243-356K for PEV [9,21-26] and more lager 
than the previous computation work [15]. Note that, a small higher Tg of PEV than 
those of PET is obtained. Due to the large difference between the experimental and 
these calculated values of Tg, the OPLS-UA parameters cannot be considered adequate 
and not yet suitable for further calculations, e.g., Tg of these polymers mixtures. The 
parameters are needed modified and validated with experimental works or all atom 
models. 
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